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Propositions

o How do we measure success for tuning?
= The performance of the tuned code --- of course

= But what about tuning time?

How long are the users willing to wait? Given 3 more hours,
how much can we improve program efficiency?

o Auto-tuning libraries have been successful and widely used
= ATLAS, PHIiPAC, FFTW, SPIRAL...
= Critical routines are tuned because they are invoked many
many times
o What happens when tuning whole applications?
= What the end users need and what compilers expect to see

= But applications are often extremely large and time consuming
to run

= Do not want to rerun entire applications to try out
different optimization configurations
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o Performance of full applications critically depend on a few
computation/data intensive routines
These routines are often small but invoked a large number of times

Performance analysis tools (e.g., HPC toolkit) can be used to identify
these routines

O Tuning these routines can significantly improve overall
performance of whole applications while reducing tuning time

In some SPEC benchmarks, running the whole application is about
175K times longer than running a single critical routine

O The problem: setting up execution environment of the routines

A driver is required to set up parameters and global variables properly
and accurately measure the runtime of each routine invocation

The cache and memory states of the machine is very important
(Whaley and Castaldo, SPE'08)

NOT a trivial problem as one may think

Overall goal: reduce tuning time without sacrificing
tuning accuracy

SMART'10



Empirical tuning approach
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o Instrumentation library
m Collect details of routine execution within whole applications
= Invoked after HPC toolkit is used to identify critical routines

o POET timer generator

| Native /
compiler
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Timer executable

= Input: routine specification + cache config + output config

» Output: timing driver with accurately replicated execution environment

o Support a checkpointing approach for routines operating on irregular data
0 Empirical tuning system
m  Apply optimizations to produce different routine implementations

= Link routine implementation with the timing driver and collect performance
feedback
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Replicating Environment of Routine
Invocations

o Goal: ensure proper input values and operand workspaces
= Reflect common usage patterns of routine
= Should not result in abnormal evaluation

O Data insensitive routines

= Amount of computation determined by integer parameters controlling
problem size

= Performance not noticeably affected by values stored in input
= Example: dense matrix multiplication
O Data sensitive routines
= Amount of computation depends on values and positioning of data
= Examples: sorting algorithms, complex pointer-chasing algorithms
0 Replicating routine invocation environment

= For data insensitive routines: replicate problem size and use randomly
generated values

= For data sensitive routines: use the check-pointing approach
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The Default Timing Approach
(for data-insensitive routines)

Routine specification for a Template of auto-generated timing driver

Matrix Multiplication kernel

routine=void ATL_USERMM(const int M,
const int N, const int K,
const double alpha,
const double* A, const int Ida,
const double* B,const int Idb,
const double beta,
double* C, const int Idc);
init={
M=Macro(MS,72);
N=Macro(NS,72);
K=Macro(KS,72);
lda=MS; Idb=KS; Idc=MS; alpha=1; beta=1;
A=Matrix(double,M,K,RANDOM,flush|align(16));
B=Matrix(double,K,N,RANDOM,flush|align(16));
C=Matrix(double,M,N,RANDOM,flushl|align(16));

¥
flop="2*M*N*K+M*N";
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for each routine parameter s in R do
if s is a pointer or array variable then
allocate memory for s
end for
for each repetition of timing do
for each routine parameter s in R do
if s needs to be initialized then
initialize memory_s
end for
if Cache flshing = true then Flush Cache
time_start <- current time
call R
time_end <- current time
time_spent <- time_end - time_start
end for
Calculate min, max, and average of
time_spent
if flps is defied then
Calculate Max and average MFLOPS
end if
Print All timings




The Checkpointing Approach
(for data-sensitive routines)

enter_checkpoint(CHECKPOINTING _IMAGE_NAME);
starttime=GetWallTime();

retval = mainGtU(i1, i2, block, quadrant, nblock, budget);
endtime=GetWallTime();

stop_checkpoint();

o Checkpoint image includes

= All the data in memory before calling enter_checkpoint

= All the instructions between enter_checkpoint and stop_checkpoint
o Checkpoint image is saved to a file

= Auto-generated timers can invoke the checkpoint image via a call to
restart_checkpoint

Utilize the Berkeley Lab Checkpoint/Restart (BLCR) library

o Delayed checkpointing

= Call enter_checkpoint several instructions/loop iterations ahead of
time to restore the cache state
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0 Language for expressing parameterized program
transformations
Parameterized code transformations and configuration space
Transformations controlled by tuning parameters
Configuration space: parameters and constraints on their values
m Interpreted by search engine and transformation engine
Language capabilities:
Able to parse/transform/output arbitrary languages
Have tried subsets of C/C++, Cobol, Java; going to add Fortran
Able to express arbitrary program transformations
Support optimizations by compilers or developers
Have implemented a large collection of compiler optimizations
Have achieved comparable performance to ATLAS(LCSDO07)
Able to easily compose different transformations
Allow transformations to be defined easily reordered
Empirical tuning of transformation ordering (LCPCO8)
Parameterization is built-in and well supported
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o Goal: verify that POET-generated timers can
Significantly reduce tuning time for large applications
Accurately reproduce performance of the tuned routines

o Methodology
Compare POET-generated timers with the ATLAS timers
Using differently optimized gemm kernels by POET

Compare POET-generated timers with profiling results from
running whole applications

For both data-insensitive and data-sensitive routines

Verify both the default timing approach and the checkpointing
approach

o Evaluation platforms

Two multicore platforms: a 3.0Ghz Dual-Core AMD Opteron 2222 and a
3.0Ghz Quad-Core Intel Xeon Mac Pro.

Timings obtained in serial mode using a single core of each machine.
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Reduction in tuning time

Full Delayed Immediate | Default
application checkpoint |checkpoint |timing via
POET
mult_su3_ |877,430ms 3,502ms 3,510ms 5ms
mat_vec
mainGtU 45,765ms 2,019ms 1,975ms 4ms
scan_for 90,460ms 6,218ms 5,930ms n/a

_patterns
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Comparing to ATLAS
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Tuning Data-Insensitive Routine

500 Calls to routine using -02
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Tuning Data-Sensitive Routine

500 Calls to routine using -02
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o Goal: reduce the tuning time of large scientific applications

Independently measure and tune the performance of critical
routines

Accurately replicate the execution environment of routines

o Solutions

Libraries to profile and collect execution environment of
critical routines

Use POET to automatically generate timing drivers
Immediate and delayed checkpointing approach

o Ongoing work
Reduce tuning time through the right search strategies

Automate the tuning process by integrating POET with
advanced compiler technologies
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