
SMART'10 1

 Automated Timer
Generation for Empirical

Tuning
Josh Magee

Qing Yi
R. Clint Whaley

University of Texas at San Antonio

SMART'10 2

Propositions
 How do we measure success for tuning?

 The performance of the tuned code --- of course
 But what about tuning time?

 How long are the users willing to wait? Given 3 more hours,
how much can we improve program efficiency?

 Auto-tuning libraries have been successful and widely used
 ATLAS, PHiPAC, FFTW, SPIRAL...
 Critical routines are tuned because they are invoked many

many times
 What happens when tuning whole applications?

 What the end users need and what compilers expect to see
 But applications are often extremely large and time consuming

to run
 Do not want to rerun entire applications to try out

different optimization configurations

SMART'10 3

Observations
 Performance of full applications critically depend on a few

computation/data intensive routines
 These routines are often small but invoked a large number of times
 Performance analysis tools (e.g., HPC toolkit) can be used to identify

these routines
 Tuning these routines can significantly improve overall

performance of whole applications while reducing tuning time
 In some SPEC benchmarks, running the whole application is about

175K times longer than running a single critical routine
 The problem: setting up execution environment of the routines

 A driver is required to set up parameters and global variables properly
and accurately measure the runtime of each routine invocation

 The cache and memory states of the machine is very important
(Whaley and Castaldo, SPE’08)

 NOT a trivial problem as one may think
Overall goal: reduce tuning time without sacrificing

tuning accuracy

SMART'10 4

Empirical tuning approach

 Instrumentation library
 Collect details of routine execution within whole applications
 Invoked after HPC toolkit is used to identify critical routines

 POET timer generator
 Input: routine specification + cache config + output config
 Output: timing driver with accurately replicated execution environment

 Support a checkpointing approach for routines operating on irregular data

 Empirical tuning system
 Apply optimizations to produce different routine implementations
 Link routine implementation with the timing driver and collect performance

feedback

SMART'10 5

Replicating Environment of Routine
Invocations
 Goal: ensure proper input values and operand workspaces

 Reflect common usage patterns of routine
 Should not result in abnormal evaluation

 Data insensitive routines
 Amount of computation determined by integer parameters controlling

problem size
 Performance not noticeably affected by values stored in input
 Example: dense matrix multiplication

 Data sensitive routines
 Amount of computation depends on values and positioning of data
 Examples: sorting algorithms, complex pointer-chasing algorithms

 Replicating routine invocation environment
 For data insensitive routines: replicate problem size and use randomly

generated values
 For data sensitive routines: use the check-pointing approach

SMART'10 6

The Default Timing Approach
(for data-insensitive routines)

routine=void ATL_USERMM(const int M,
 const int N, const int K,
 const double alpha,
 const double* A, const int lda,
 const double* B,const int ldb,
 const double beta,
 double* C, const int ldc);
init={
 M=Macro(MS,72);
 N=Macro(NS,72);
 K=Macro(KS,72);
 lda=MS; ldb=KS; ldc=MS; alpha=1; beta=1;
 A=Matrix(double,M,K,RANDOM,flush|align(16));
 B=Matrix(double,K,N,RANDOM,flush|align(16));
 C=Matrix(double,M,N,RANDOM,flush|align(16));
 } ;
flop="2*M*N*K+M*N";

Routine specification for a
Matrix Multiplication kernel for each routine parameter s in R do

 if s is a pointer or array variable then
 allocate memory for s
 end for
 for each repetition of timing do
 for each routine parameter s in R do
 if s needs to be initialized then
 initialize memory_s
 end for
 if Cache flshing = true then Flush Cache
 time_start <- current time
 call R
 time_end <- current time
 time_spent <- time_end - time_start
 end for
 Calculate min, max, and average of
time_spent
 if flps is defied then
 Calculate Max and average MFLOPS
 end if
 Print All timings

Template of auto-generated timing driver

SMART'10 7

The Checkpointing Approach
(for data-sensitive routines)

 Checkpoint image includes
 All the data in memory before calling enter_checkpoint
 All the instructions between enter_checkpoint and stop_checkpoint

 Checkpoint image is saved to a file
 Auto-generated timers can invoke the checkpoint image via a call to

restart_checkpoint
 Utilize the Berkeley Lab Checkpoint/Restart (BLCR) library
 Delayed checkpointing

 Call enter_checkpoint several instructions/loop iterations ahead of
time to restore the cache state

enter_checkpoint(CHECKPOINTING_IMAGE_NAME);
.....
starttime=GetWallTime();
retval = mainGtU(i1, i2, block, quadrant, nblock, budget);
endtime=GetWallTime();
.....
stop_checkpoint();

SMART'10 8

The POET Language
 Language for expressing parameterized program

transformations
 Parameterized code transformations and configuration space

 Transformations controlled by tuning parameters
 Configuration space: parameters and constraints on their values

 Interpreted by search engine and transformation engine
 Language capabilities:

 Able to parse/transform/output arbitrary languages
 Have tried subsets of C/C++, Cobol, Java; going to add Fortran

 Able to express arbitrary program transformations
 Support optimizations by compilers or developers
 Have implemented a large collection of compiler optimizations
 Have achieved comparable performance to ATLAS(LCSD07)

 Able to easily compose different transformations
 Allow transformations to be defined easily reordered
 Empirical tuning of transformation ordering (LCPC08)

 Parameterization is built-in and well supported

SMART'10 9

Experimental Evaluation
 Goal: verify that POET-generated timers can

 Significantly reduce tuning time for large applications
 Accurately reproduce performance of the tuned routines

 Methodology
 Compare POET-generated timers with the ATLAS timers

 Using differently optimized gemm kernels by POET
 Compare POET-generated timers with profiling results from

running whole applications
 For both data-insensitive and data-sensitive routines
 Verify both the default timing approach and the checkpointing

approach

 Evaluation platforms
 Two multicore platforms: a 3.0Ghz Dual-Core AMD Opteron 2222 and a

3.0Ghz Quad-Core Intel Xeon Mac Pro.
 Timings obtained in serial mode using a single core of each machine.

SMART'10 10

Reduction in tuning time

n/a5,930ms6,218ms90,460msscan_for
_patterns

4ms1,975ms2,019ms45,765msmainGtU

5ms3,510ms3,502ms877,430msmult_su3_
mat_vec

Default
timing via
POET

Immediate
checkpoint

Delayed
checkpoint

Full
application

SMART'10 11

Comparing to ATLAS

SMART'10 12

Tuning Data-Insensitive Routine

SMART'10 13

Tuning Data-Sensitive Routine

SMART'10 14

Summary and Ongoing work
 Goal: reduce the tuning time of large scientific applications

 Independently measure and tune the performance of critical
routines

 Accurately replicate the execution environment of routines

 Solutions
 Libraries to profile and collect execution environment of

critical routines
 Use POET to automatically generate timing drivers
 Immediate and delayed checkpointing approach

 Ongoing work
 Reduce tuning time through the right search strategies
 Automate the tuning process by integrating POET with

advanced compiler technologies

