
Phase-based Tuning
for Better Utilization of Performance-Asymmetric Multicore

Processors

Tyler Sondag and Hridesh Rajan

Department of Computer Science
Iowa State University

April 3, 2011

Supported in part by the US National Science Foundation under grant 00-46059.

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Performance Asymmetric Multicores

I What: Cores may have different characteristics
clock speed, cache size, branch predictors, in/out-of order, etc.

I Why more efficient than homogeneous1:
I space
I heat
I power
I performance-power ratio
I parallelism

I Asymmetry in symmetric systems.

IBM’s Cell

AMD’s Fusion

Intel’s Sandybridge

2
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

Asymmetric
Multicore

1R. Kumar et al. ISCA ’04
Phase-Based Tuning – Sondag and Rajan 2/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Problem: Efficient utilization of asymmetric cores.
Challenge: Match resource needs of threads to cores.

2
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

Asymmetric
Multicore Workload

void foo(){
 for(i=0:n)
 //cpu intense
 for(i=0:n)
 //mem intense}

Phase-Based Tuning – Sondag and Rajan 3/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Problem: Efficient utilization of asymmetric cores.
Challenge: Match resource needs of threads to cores.

2
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

1
GHz

??

Asymmetric
Multicore Workload

void foo(){
 sw(fast)
 for(i=0:n)
 //cpu intense
 sw(slow)
 for(i=0:n)
 //mem intense}

void foo(){
 for(i=0:n)
 //cpu intense
 for(i=0:n)
 //mem intense}

Phase-Based Tuning – Sondag and Rajan 4/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 5/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 6/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 7/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 8/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 9/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 10/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this manually? – tedious, error prone, expertise
I statically? – unknown target, behavior changes
I dynamically? – possible, but expensive

Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
I Problem in detail
I Overview of solution
I Evaluation

Phase-Based Tuning – Sondag and Rajan 11/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this statically?
I Can we do this dynamically?

Phase-Based Tuning – Sondag and Rajan 12/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this statically?
I Can we do this dynamically?

Phase-Based Tuning – Sondag and Rajan 13/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements
I What must be known to perform an efficient mapping?

I Behavior of application
I Behavior of cores

I Can we do this statically?
I Can we do this dynamically?

Phase-Based Tuning – Sondag and Rajan 14/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 15/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 16/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 17/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 18/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 19/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

I Manually tuning requires expertise and is error prone.
I What is the behavior of library calls?
I How will my code perform on each core?

I Resource need of threads may vary at runtime.
I Program input may change performance

I Target architecture unknown statically (multiple targets).
I How to create a portable implementation

I Resource availability may change due to contention
I Other process on a core may demand more cache

Phase-Based Tuning – Sondag and Rajan 20/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic Solution?

I Can we perform an efficient mapping dynamically?
I Know program behavior, cores’ resources, etc.
I Dynamically instrumentation/monitoring is expensive

I ex: applying Pin to an application has ≥ 50% overhead2

I Instrumentation code can introduce high overheads.
I Idea: Move work from dynamic to static analysis (hybrid)

2Cohn, Pin Tutorial, 2009
Phase-Based Tuning – Sondag and Rajan 21/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic Solution?

I Can we perform an efficient mapping dynamically?
I Know program behavior, cores’ resources, etc.
I Dynamically instrumentation/monitoring is expensive

I ex: applying Pin to an application has ≥ 50% overhead2

I Instrumentation code can introduce high overheads.
I Idea: Move work from dynamic to static analysis (hybrid)

2Cohn, Pin Tutorial, 2009
Phase-Based Tuning – Sondag and Rajan 22/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic Solution?

I Can we perform an efficient mapping dynamically?
I Know program behavior, cores’ resources, etc.
I Dynamically instrumentation/monitoring is expensive

I ex: applying Pin to an application has ≥ 50% overhead2

I Instrumentation code can introduce high overheads.
I Idea: Move work from dynamic to static analysis (hybrid)

2Cohn, Pin Tutorial, 2009
Phase-Based Tuning – Sondag and Rajan 23/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic Solution?

I Can we perform an efficient mapping dynamically?
I Know program behavior, cores’ resources, etc.
I Dynamically instrumentation/monitoring is expensive

I ex: applying Pin to an application has ≥ 50% overhead2

I Instrumentation code can introduce high overheads.
I Idea: Move work from dynamic to static analysis (hybrid)

2Cohn, Pin Tutorial, 2009
Phase-Based Tuning – Sondag and Rajan 24/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Problem: Match code to cores based on resources needed/provided

Phase-Based Tuning – Sondag and Rajan 25/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Start with program

void foo(){
 for(i=0:n)
 //cpu intense
 for(i=0:n)
 //mem intense
}

Phase-Based Tuning – Sondag and Rajan 26/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Cluster code into groups of similar behavior

Advantage: No need to predict actual behavior, just similarity

Phase-Based Tuning – Sondag and Rajan 27/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Run some program segments on each core type

Advantage: Dynamically, no need to monitor all the code.

Phase-Based Tuning – Sondag and Rajan 28/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Determine preferred mapping of each cluster

Advantage: Dynamically, no need to monitor all the code.

Phase-Based Tuning – Sondag and Rajan 29/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Hybrid Analysis Overview

Code now knows preferred core type

Phase-Based Tuning – Sondag and Rajan 30/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Approach Overview

Idea: Apply the same thread-to-core mapping to all
approximately similar sections of code

I Statically
I break the program into sections of code
I determine approximate similarity between these sections
I instrument where behavior changes

I Dynamically
I monitor a few sections
I make mapping decisions for similar sections

Phase-Based Tuning – Sondag and Rajan 31/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static: Program

void foo(){
 for(i=0:n)
 //cpu intense
 for(i=0:n)
 //mem intense
}

Phase-Based Tuning – Sondag and Rajan 32/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static: Determine approximate similarity

Phase-Based Tuning – Sondag and Rajan 33/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static: Reduce number of transition points

Phase-Based Tuning – Sondag and Rajan 34/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static: Insert phase marks

Phase-Based Tuning – Sondag and Rajan 35/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Static/Dynamic: Phase Marks

I Inserted on path where behavior is likely to change
I Must pick “good” points to avoid overhead
I For example, loop entry points

I Contains type information
I Contains dynamic analysis code

I Monitor behavior if mapping is unknown
I Switch cores if mapping is known

Phase-Based Tuning – Sondag and Rajan 36/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Monitor

Phase-Based Tuning – Sondag and Rajan 37/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Run

Phase-Based Tuning – Sondag and Rajan 38/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Run

Phase-Based Tuning – Sondag and Rajan 39/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Monitor

Phase-Based Tuning – Sondag and Rajan 40/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Run

Phase-Based Tuning – Sondag and Rajan 41/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Determine preferred core

A A AB B BBA ...

Phase-Based Tuning – Sondag and Rajan 42/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Determine preferred core

A A AB B BBA ...

Phase-Based Tuning – Sondag and Rajan 43/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Run

A A AB B BBA ...

Phase-Based Tuning – Sondag and Rajan 44/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Switch to matched core (slow)

A A AB B BBA ...

Phase-Based Tuning – Sondag and Rajan 45/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Dynamic: Run on matched core (slow)

A A AB B BBA ...

Phase-Based Tuning – Sondag and Rajan 46/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Solution overview

Hybrid analysis – phase-guided tuning
I Statically predict approximate similarity
I Statically instrument application with this information

I Find likely phase transitions (structures with different types)
I Instrument paths into likely long running code (e.g. loops)

I Behavior of a section gives insight into entire cluster

Phase-Based Tuning – Sondag and Rajan 47/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Solution overview

Hybrid analysis – phase-guided tuning
I Statically predict approximate similarity
I Statically instrument application with this information

I Find likely phase transitions (structures with different types)
I Instrument paths into likely long running code (e.g. loops)

I Behavior of a section gives insight into entire cluster

Phase-Based Tuning – Sondag and Rajan 48/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Problem Hybrid Analysis

Solution overview

Hybrid analysis – phase-guided tuning
I Statically predict approximate similarity
I Statically instrument application with this information

I Find likely phase transitions (structures with different types)
I Instrument paths into likely long running code (e.g. loops)

I Behavior of a section gives insight into entire cluster

Phase-Based Tuning – Sondag and Rajan 49/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Experimental Setup

I Hardware setup: Quad Core - 2x2.4GHz, 2x1.6GHz
I Workloads

I 18-84 SPEC CPU2000 and CPU2006 benchmarks
I constant workload size

I Compare to standard Linux assignment

Phase-Based Tuning – Sondag and Rajan 50/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Overhead

I Space overhead
I Time overhead
I Average cycles per switch

Phase-Based Tuning – Sondag and Rajan 51/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Time Overhead

I Time overhead
I Time spent executing code in phase marks
I Directly impacts performance

Phase-Based Tuning – Sondag and Rajan 52/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Time Overhead

Phase-Based Tuning – Sondag and Rajan 53/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Cycles per Switch

I Average cycles per switch
I Impacts performance
I Must be high enough to amortize runtime costs

Phase-Based Tuning – Sondag and Rajan 54/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Cycles per Switch

1
10

100
1,000
10,000

100,000
1,000,000
10,000,000

100,000,000
1,000,000,000
10,000,000,000
100,000,000,000

1,000,000,000,000
10,000,000,000,000

C
yc

le
s

(l
o

g
sc

al
e

)

Average Cycles per Core Switch

Phase-Based Tuning – Sondag and Rajan 55/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Performance

I Speedup – average process time
I Fairness (max-stretch) – maximum process slow-down

Phase-Based Tuning – Sondag and Rajan 56/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Experimental Setup Overhead Improvements

Speedup vs Fairness

Best: Inter-procedural loop technique, min. size 45 instructions

Phase-Based Tuning – Sondag and Rajan 57/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Future Work

I Improve static behavior similarity prediction
I Improved techniques for picking phase marks

e.g. estimate number of iterations instead of number of instructions

I Dynamic optimization
I feedback mechanism to improve assignment
I globally optimal assignment

Phase-Based Tuning – Sondag and Rajan 58/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Future Work

I Improve static behavior similarity prediction
I Improved techniques for picking phase marks

e.g. estimate number of iterations instead of number of instructions

I Dynamic optimization
I feedback mechanism to improve assignment
I globally optimal assignment

Phase-Based Tuning – Sondag and Rajan 59/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Future Work

I Improve static behavior similarity prediction
I Improved techniques for picking phase marks

e.g. estimate number of iterations instead of number of instructions

I Dynamic optimization
I feedback mechanism to improve assignment
I globally optimal assignment

Phase-Based Tuning – Sondag and Rajan 60/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Conclusion

I Performance asymmetric multicores are beneficial
I Problem: Techniques to effectively utilize are needed
I Idea: Use repeating behavior to reduce dynamic overhead.

I Programmer oblivious – behavior and architectures
I Automatic – requires no assistance from programmer
I Negligible overhead – less than 0.2% runtime overhead
I Transparent deployment – no OS or compiler modification
I Tune once run anywhere – architecture independent

Phase-Based Tuning – Sondag and Rajan 61/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Conclusion

I Performance asymmetric multicores are beneficial
I Problem: Techniques to effectively utilize are needed
I Idea: Use repeating behavior to reduce dynamic overhead.

I Programmer oblivious – behavior and architectures
I Automatic – requires no assistance from programmer
I Negligible overhead – less than 0.2% runtime overhead
I Transparent deployment – no OS or compiler modification
I Tune once run anywhere – architecture independent

Phase-Based Tuning – Sondag and Rajan 62/63 http://www.cs.iastate.edu/∼sapha

Introduction Approach Results Conclusion Future Work Conclusion

Questions

Questions?

Phase-Based Tuning – Sondag and Rajan 63/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Idea

Problem: Match code to cores based on resources needed/provided
I Behavior: resource requirements (IPC, cache miss, etc.)
I Phase: segment of execution with similar behavior throughout3
I Insight: Behavior tends to repeat itself.

Phase behavior for gcc (taken from [3]) 5

3T. Sherwood et al. ASPLOS ’02
Phase-Based Tuning – Sondag and Rajan 64/63 http://www.cs.iastate.edu/∼sapha

Experimental Setup

I Hardware setup: Quad Core - 2x2.4GHz, 2x1.6GHz
I Software setup

I Static analysis/instrumentation: our framework based on
GNU Binutils

I Runtime Performance monitoring: PAPI, perfmon2
I Core switching: affinity calls built-in to kernel
I Workloads

I 18-84 SPEC CPU2000 and CPU2006 benchmarks
I constant workload size

I Compare to standard Linux assignment

Throughput vs Fairness

Speedup vs Throughput

??

Determining program behavior

Falls into two categories
I Techniques using execution traces
I Purely dynamic techniques

Execution Traces

I Benefits:
I Very accurate since actual performance is known
I Low dynamic overhead since no monitoring is required

I Limitations:
I Requires sample input set to be developed
I Run entire program to create execution trace
I What about sections of code not covered by sample input?
I Do different inputs result in different behavior?

Purely Dynamic

I Benefits:
I Does not require sample input sets
I No need for execution trace
I Does not monitor the whole program

I Limitations:
I Decisions for future code are made based on past code
I Higher dynamic overhead since we must monitor

periodically throughout the entire execution

1

Phase Marking

Phase Marking cost

Recall that we had two problems to solve:
I Move work from dynamic to static analysis – phase-guided
I Reduce number of / pick good instrumentation points

Phase-Based Tuning – Sondag and Rajan 71/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Phase Marking cost

Recall that we had two problems to solve:
I Move work from dynamic to static analysis – phase-guided
I Reduce number of / pick good instrumentation points

Phase-Based Tuning – Sondag and Rajan 72/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Phase Marking cost

I Phase marks cost (space and run-time)
I We need techniques to pick good insertion points

I Basic block
I Basic block with look-ahead
I Interval (intra-procedural)
I Loop (inter-procedural)

5

Phase-Based Tuning – Sondag and Rajan 73/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Basic Block

Basic block
I Similarity is done on basic blocks
I Transitions between blocks with different types
I Problem: blocks are small, cost is likely higher than gains

Phase-Based Tuning – Sondag and Rajan 74/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Basic Block with Look-ahead

Basic block with look-ahead
I Instrument if next n blocks are of similar type
I Ensures switching for larger number of instructions
I In some cases, captures loops
I Problem: allows multiple switches in small loops
I Problem: cost of optimizing a few blocks is still likely to

overshadow gains

Phase-Based Tuning – Sondag and Rajan 75/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Intervals

Interval (intra-procedural)
I Instrument if interval has a

predominant type
I Intervals capture small loops
I All instructions are part of

some interval
I Problem: some intervals are

not loops (few instructions)

1

2 3

4

Types
A
B

5

Phase-Based Tuning – Sondag and Rajan 76/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Loop

Loop based (inter-procedural)
I Instrument loop based on

predominant type
I Remove instrumentation if part

of larger loop of same type
I Captures loops and nothing else
I Considers nested loops
I Considers function calls

2

3

Types
A
B

4

1

Phase-Based Tuning – Sondag and Rajan 77/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Static: Determine approximate similarity

Phase-Based Tuning – Sondag and Rajan 78/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Static: Predicting Similarity

I Not predicting actual behavior, just similarity
I Various metrics to consider

I instruction mix (int vs float, div, etc)
I cache behavior
I branch prediction accuracy
I available ILP
I data structure(s)

I Proof-of-concept: 85% accuracy using few metrics

Phase-Based Tuning – Sondag and Rajan 79/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Space overhead

I Space overhead
I May hurt instruction cache performance
I Increased binary file size

Phase-Based Tuning – Sondag and Rajan 80/63 http://www.cs.iastate.edu/∼sapha

Phase Marking

Space Overhead

Phase-Based Tuning – Sondag and Rajan 81/63 http://www.cs.iastate.edu/∼sapha

	Introduction
	Asymmetric Multicores
	Overview

	Approach
	Problem
	Hybrid Analysis

	Results
	Experimental Setup
	Overhead
	Improvements

	Conclusion
	Future Work
	Conclusion

	Appendix
	
	Phase Marking

