Phase-based Tuning

for Better Utilization of Performance-Asymmetric Multicore
Processors

Tyler Sondag and Hridesh Rajan

Department of Computer Science
lowa State University

April 3, 2011

Supported in part by the US National Science Foundation under grant 00-46059.

Introduction Asymmetric Multicores Overview

Performance Asymmetric Multicores

» What: Cores may have different characteristics
clock speed, cache size, branch predictors, in/out-of order, etc.
» Why more efficient than homogeneous':

» space
» heat

> power —

» performance-power ratio GHz| |GHz 2
» parallelism 11| GHz

GHz| |GHz

» Asymmetry in symmetric systems.

1 1 1 1
GHz| |GHz| |GHz| |GHz

1 1 1 1
GHz| |GHz| |GHz| |GHz

IBM’s Cell =
AMD’s Fusion Asymmetnc
Intel’s Sandybridge Multicore

'R. Kumar et al. ISCA 04

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Problem: Efficient utilization of asymmetric cores.
Challenge: Match resource needs of threads to cores.

void foo(){
@@ Glz-lz for(i=0:n)
B //cpu intense

for(i=0:n)
%% //mem intense}

Asymmetric
Multicore Workload

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Problem: Efficient utilization of asymmetric cores.
Challenge: Match resource needs of threads to cores.

void foo(){ void foo(){

@ 2 for(i=0:
(i=0:n) sw(fast)
ki //cpu intense ?? for(i=0:n)
for(i=0:n) :|> //cpu intense
@@ sw(slow)

//mem intense}
@@ for(i=0:n)

Asymmetric //mem intense}
Multicore Workload

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
» What must be known to perform an efficient mapping?
» Behavior of application
» Behavior of cores

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
» Can we do this manually? — tedious, error prone, expertise

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
Can we do this manually? — tedious, error prone, expertise

» statically? — unknown target, behavior changes

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
Can we do this manually? — tedious, error prone, expertise
statically? — unknown target, behavior changes
» dynamically? — possible, but expensive

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Asymmetric Multicores Overview

Overview

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
Can we do this manually? — tedious, error prone, expertise
statically? — unknown target, behavior changes
dynamically? — possible, but expensive
Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Introduction Overview

Overview

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
Can we do this manually? — tedious, error prone, expertise
statically? — unknown target, behavior changes
dynamically? — possible, but expensive
Insight: Use repeating behavior to reduce runtime overhead.
Contribution: Phase-based tuning

Outline
» Problem in detalil
» Overview of solution
» Evaluation

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements
» What must be known to perform an efficient mapping?
» Behavior of application
» Behavior of cores

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Problem

Technical Challenge: Matching resource requirements
What must be known to perform an efficient mapping?
Behavior of application
Behavior of cores
» Can we do this statically?
» Can we do this dynamically?

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible
» Manually tuning requires expertise and is error prone.

» What is the behavior of library calls?
» How will my code perform on each core?

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible
Manually tuning requires expertise and is error prone.

What is the behavior of library calls?
How will my code perform on each core?

» Resource need of threads may vary at runtime.
» Program input may change performance

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible
Manually tuning requires expertise and is error prone.
What is the behavior of library calls?
How will my code perform on each core?
Resource need of threads may vary at runtime.
Program input may change performance
» Target architecture unknown statically (multiple targets).
» How to create a portable implementation

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach

Static Solution?

Can we perform an efficient mapping statically?
Difficult and frequently impossible
Manually tuning requires expertise and is error prone.
What is the behavior of library calls?
How will my code perform on each core?
Resource need of threads may vary at runtime.
Program input may change performance
Target architecture unknown statically (multiple targets).
How to create a portable implementation
» Resource availability may change due to contention
» Other process on a core may demand more cache

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic Solution?

» Can we perform an efficient mapping dynamically?

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic Solution?

Can we perform an efficient mapping dynamically?
» Know program behavior, cores’ resources, etc.

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic Solution?

Can we perform an efficient mapping dynamically?
Know program behavior, cores’ resources, etc.
» Dynamically instrumentation/monitoring is expensive

» ex: applying Pin to an application has > 50% overhead?
» Instrumentation code can introduce high overheads.

2Cohn, Pin Tutorial, 2009

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic Solution?

Can we perform an efficient mapping dynamically?
Know program behavior, cores’ resources, etc.
Dynamically instrumentation/monitoring is expensive

ex: applying Pin to an application has > 50% overhead?
Instrumentation code can introduce high overheads.

» ldea: Move work from dynamic to static analysis (hybrid)

2Cohn, Pin Tutorial, 2009

Phase-Based Tuning — Sondag and Rajan

http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Hybrid Analysis Overview

Problem: Match code to cores based on resources needed/provided

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach

Hybrid Analysis Overview

Problem Hybrid Analysis

Start with program

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

}

Phase-Based Tuning — Sondag and Rajan

//www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Hybrid Analysis Overview

Cluster code into groups of similar behavior

void foo(){ »
for(i=0:n) ®
//cpu intense
for(i=0:n) A
//mem intense @

}

Advantage: No need to predict actual behavior, just similarity

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Hybrid Analysis Overview

Run some program segments on each core type

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

i

Advantage: Dynamically, no need to monitor all the code.

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach

Hybrid Analysis Overview

Problem Hybrid Analysis

Determine preferred mapping of each cluster

void foo(){
for(i=0:n)
//cpu intense

for(i=0:n) A |
//mem intense -
}

Advantage: Dynamically, no need to monitor all the code.

Phase-Based Tuning — Sondag and Rajan

http://www.cs.iastate.edu/~ sapha

Problem Hybrid Analysis

Approach

Hybrid Analysis Overview

Code now knows preferred core type

void foo(){ B vg;jt(fé))o(){
for(i=_0:n) for(i=0:n)
;f:;;;lg-tr?)nse //cpu intense ‘
//mem intense e

}

http://www.cs.iastate.edu/~ sapha

Phase-Based Tuning — Sondag and Rajan

Approach Problem Hybrid Analysis

Approach Overview

Idea: Apply the same thread-to-core mapping to all
approximately similar sections of code
» Statically
» break the program into sections of code
» determine approximate similarity between these sections
» instrument where behavior changes
» Dynamically
» monitor a few sections
» make mapping decisions for similar sections

Static Dynamic
Program' System | _,| Performance
5 Scheduler €| Monitoring
Static Binary
Analyser Instrumentation

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static: Program

> Ll Llfeee

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

}

Phase-Based Tuning — Sondag and Rajan

Approach Problem Hybrid Analysis

Static: Determine approximate similarity

Akl B A BA Bk{B]

void foo(){ »
for(i=0:n) ®
//cpu intense
for(i=0:n) A
//mem intense @

}

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static: Reduce number of transition points

void foo(){ »
for(i=0:n) ®
//cpu intense
for(i=0:n) A
//mem intense @

}

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Static: Insert phase marks

(XYY} ~t (YY)}
void foo(){ B "o f§°(){
L t
for(i=0:n) 9 I?(;)r((i=)0:n)
ﬁlocr[z;l_lgitr?)nse A //cpu intense
//mem inten ?é)rt((ii)O:n)
} //mem intense}

Phase-Based Tuning — Sondag and Rajan //www.cs.iastate.e

Approach Problem Hybrid Analysis

Static/Dynamic: Phase Marks

» Inserted on path where behavior is likely to change
» Must pick “good” points to avoid overhead
» For example, loop entry points

» Contains type information

» Contains dynamic analysis code

» Monitor behavior if mapping is unknown
» Switch cores if mapping is known

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic: Monitor

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

BaEE

Phase-Based Tuning — Sondag and Rajan / http://www.cs.iastate.

Approach Problem Hybrid Analysis

Dynamic: Run

void foo(){

for(i=0:n)

//cpu intense [GHz]
for(i=0:n)
/1 int

) mem intense

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.e!

Approach Problem Hybrid Analysis

Dynamic: Run

+ANBRIAK B A K[AR{#BRBI-

void foo(){

for(i=0:n) E Gﬁlz
//cpu intense e
for(i=0:n) @

//mem intense

BaEE

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.e!

Approach Problem Hybrid Analysis

Dynamic: Monitor

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense]
} el

Phase-Based Tuning — Sondag and Rajan / //www.cs.iastate.e

Approach Problem Hybrid Analysis

Dynamic: Run

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

g

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.e!

Approach Problem Hybrid Analysis

Dynamic: Determine preferred core

void foo(){
for(i=0:n)
//cpu intense
for(i=0:n)
//mem intense

}

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic: Determine preferred core

. void foo(){

void foo(){ opt(B)
for(|=_0:n) / for(i=0:n)
//cpu intense //cpu intense
for(i=0:n) A opt(A)
//mem intense @

} \

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Dynamic: Run

) void foo(){

void foo(){ opt(B)
for(|=_0:n) / for(i=0:n)
//cpu intense //cpu intense
for(i=0:n) A opt(A)
//mem intense @

} \

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.

Problem Hybrid Analysis

Approach

Dynamic: Switch to matched core (slow)

void foo(){ vg;it(fg)O(){
for(|=_0:n) / for(i=0:n)
//cpu intense //cpu intense
for(i=0:n) opt(A)
//mem intense

}

http://www.cs.iastate.edu/~ sapha

Phase-Based Tuning — Sondag and Rajan

Approach Problem Hybrid Analysis

Dynamic: Run on matched core (slow)

) void foo(){

void foo(){ opt(B)
for(|=_0:n) / for(i=0:n)
//cpu intense //cpu intense
for(i=0:n) opt(A)
//mem intense

}

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Approach Problem Hybrid Analysis

Solution overview

Hybrid analysis — phase-guided tuning
» Statically predict approximate similarity

Statically cluster Execute on Map clusters Core switch

code segments each core to cores at transitions
(behave similarly) type void foo(){
void foo(){ > B opt(B)
for(i=0:n) :.o. ;/ocr;ri::tr;)nse
//cpu intense)
for(1=0:m) = = A =D opt(A)
//mem intense - ... for(i=0_:n)
} //mem intense}

http://www.cs.iastate.edu/~ sapha

Phase-Based Tuning — Sondag and Rajan

Approach Problem Hybrid Analysis

Solution overview

Hybrid analysis — phase-guided tuning
Statically predict approximate similarity
» Statically instrument application with this information

» Find likely phase transitions (structures with different types)
» Instrument paths into likely long running code (e.g. loops)

Statically cluster Execute on Map clusters Core switch

code segments each core to cores at transitions
(behave similarly) type void foo(){
void foo(){ > B opt(B)
for(i=0:n) :.o. ;/ocr;ri::tr;)nse
//cpu intense)
for(1=0:m) = = A =D opt(A)
//mem intense - ... for(i=0_:n)
} //mem intense}

http://www.cs.iastate.edu/~ sapha

Phase-Based Tuning — Sondag and Rajan

Approach Problem Hybrid Analysis

Solution overview

Hybrid analysis — phase-guided tuning
Statically predict approximate similarity
Statically instrument application with this information
Find likely phase transitions (structures with different types)
Instrument paths into likely long running code (e.g. loops)

» Behavior of a section gives insight into entire cluster

Statically cluster Execute on Map clusters Core switch

code segments each core to cores at transitions

(behave similarly) void foo(){

void foo(){ A opt(B)
for(i=0:n) for(i=0:n)
//cpu intense /lcpu intense
for(i=0:n) opt(A)
//mem intense

} |

http://www.cs.iastate.edu/~ sapha

Phase-Based Tuning — Sondag and Rajan

Results Experimental Setup Overhead Improvements

Experimental Setup

» Hardware setup: Quad Core - 2x2.4GHz, 2x1.6GHz
» Workloads

» 18-84 SPEC CPU2000 and CPU2006 benchmarks
» constant workload size

» Compare to standard Linux assignment

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Results

Overhead

Experimental Setup

Overhead Improvements

» Space overhead
» Time overhead
» Average cycles per switch

Phase-Based Tuning — Sondag and Rajan

//www.cs.iastate.edu/~ sapha

Results Experimental Setup Overhead Improvements

Time Overhead

» Time overhead

» Time spent executing code in phase marks
» Directly impacts performance

Phase-Based Tuning — Sondag and Rajan //www.cs.iastate.e

3 1 [ogldooT

S | [sp]dooq

&1 [og]dooq
I (0o]uI
I, (S i)
I (0]

~ I [c'oclag

< I (c'oclag

o I (T'0clag

S I (0‘0Zlag

» I [c'sTiag

- I (c'STlag

< I (1'STlag

I [0'ST]ag

~ I (< 0T]ag

~ I (20799

o I (1 01]99

o I (0'0T]dd

Improvements
22 17 12

Experimental Setup Overhead

9 ® © ¥ «N o
syew aseyd ul
awp jo abeuaalad

n
.8,
5]
o
°
c
5
o
I
°
c
S
(2]
|
=)
9
e
>
=]
°
@
(2]
©
Q
@
(2]
«
=
o

e
@
o)

=
)
P

O
o)

E

T

Results Experimental Setup Overhead Improvements

Cycles per Switch

» Average cycles per switch

» Impacts performance
» Must be high enough to amortize runtime costs

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.edu/~ sapha

Results Overhead

Cycles per Switch

Average Cycles per Core Switch

10,000,000,000,000
1,000,000,000,000
100,000,000,000
10,000,000,000
1,000,000,000
100,000,000
10,000,000
1,000,000

100,000

10,000

1,000

100

10

Cycles (log scale)

Qb\ Qb\ Qb\ Q(o\ Qb\ Qb\ 000\ 00\ QQQ\ QQQ\ QQ\ 00\ QQ\

P P @Q@g&we@g

RPN NN IR

T @t T S S L0 @ PO
; o ™ N3 '\ ’3,")‘

Phase-Based Tuning — Sondag and Rajan

Results Experimental Setup Overhead Improvements

Performance

» Speedup — average process time
» Fairness (max-stretch) — maximum process slow-down

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Results Experimental Setup

Speedup vs Fairness

Overhead Improvements

40% INT[45]

u

LOOP[45]
= 20% LOOPI60] BBI15,1] n
3] LOOP[30] [|
D BB[10,3] u INT[60]
g 0% INTI30] ga5,01
15 - BBIP2] m BB[10,0] '
3 ~20% BBI10,2]] . BB[20,1]
E BB[10,1] BB[15,3] s
S -40% BB[20,3]
» u BB[20,2]
£ -60% =
=
-(L—E -80% BB[Zg,O]
-100%
-20% -10% 0% 10% 20% 30% 40%

Speedup (average time)

Best: Inter-procedural loop technique, min. size 45 instructions

Phase-Based Tuning — Sondag and Rajan

//www.cs.iastate.e

Conclusion Future Work Conclusion

Future Work

» Improve static behavior similarity prediction

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Conclusion Future Work Conclusion

Future Work

Improve static behavior similarity prediction

» Improved techniques for picking phase marks
e.g. estimate number of iterations instead of number of instructions

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.edu/~ sapha

Conclusion Future Work Conclusion

Future Work

Improve static behavior similarity prediction
Improved techniques for picking phase marks
e.g. estimate number of iterations instead of number of instructions
» Dynamic optimization
» feedback mechanism to improve assignment
» globally optimal assignment

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.edu/~ sapha

Conclusion Future Work Conclusion

Conclusion

» Performance asymmetric multicores are beneficial

» Problem: Techniques to effectively utilize are needed
» Idea: Use repeating behavior to reduce dynamic overhead.

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Conclusion Future Work Conclusion

Conclusion

» Performance asymmetric multicores are beneficial

» Problem: Techniques to effectively utilize are needed

» Idea: Use repeating behavior to reduce dynamic overhead.
» Programmer oblivious — behavior and architectures

Automatic — requires no assistance from programmer

Negligible overhead — less than 0.2% runtime overhead

Transparent deployment — no OS or compiler modification

Tune once run anywhere — architecture independent

vV vy VvVYyy

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Conclusion Future Work Conclusion

Questions

Questions?

Phase-Based Tuning — Sondag and Rajan

Phase Marking

Problem: Match code to cores based on resources needed/provided
» Behavior: resource requirements (IPC, cache miss, etc.)
» Phase: segment of execution with similar behavior throughout®
» Insight: Behavior tends to repeat itself.

ISolid line — Instrhction Per Cycle I(IPC) Dlashed line — Caclhe misses
Phase behavior for gcc (taken from [3])

3T. Sherwood et al. ASPLOS *02

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Experimental Setup

» Hardware setup: Quad Core - 2x2.4GHz, 2x1.6GHz

» Software setup
» Static analysis/instrumentation: our framework based on
GNU Binutils
» Runtime Performance monitoring: PAPI, perfmon2
» Core switching: affinity calls built-in to kernel
» Workloads
» 18-84 SPEC CPU2000 and CPU2006 benchmarks
» constant workload size

» Compare to standard Linux assignment

Throughput vs Fairness

700% INT[.30]
6
500% BB[1g,0]
4
3

00% LOOP[45]
200% LOOP[3.0]]
100% BB[15,0] BB[15,.1]

0% BBIS:31 BBILS.2)
-100% BB[lO 1]BB[10 2] BB[10,3]

-30% -20% -10% 0% 10% 20% 30% 40%
Fairness (max-stretch)

INT[45]
[]

| -
INTI60T | 6opreo]

Throughput Improvement

Speedup vs Throughput

700% INT(30]
€ 600%
@
g) 500% 8B(10,0]
3 400%
€ 300%
A= LOOP[45]
2 200% LOOP[30] -
2] INT[45]
0 BB[15,1
5 100% ee129.0 BB20.3] pgra03ih]_-BB[zo,l]
0% Bei102m " ®2 g _ m "Loop[eo] BBI15,01 INTI6O]

BB[10,31BB[10,1]BB[15,3]

-20% -10% 0% 10% 20% 30% 40%
Speedup (avg time)

Determining program behavior

Falls into two categories
» Techniques using execution traces
» Purely dynamic techniques

Execution Traces

» Benefits:

» Very accurate since actual performance is known

» Low dynamic overhead since no monitoring is required
» Limitations:

» Requires sample input set to be developed
Run entire program to create execution trace

What about sections of code not covered by sample input?
Do different inputs result in different behavior?

v vy

Purely Dynamic

» Benefits:
» Does not require sample input sets
» No need for execution trace
» Does not monitor the whole program
» Limitations:
» Decisions for future code are made based on past code
» Higher dynamic overhead since we must monitor
periodically throughout the entire execution

Phase Marking cost

Recall that we had two problems to solve:
» Move work from dynamic to static analysis — phase-guided
» Reduce number of / pick good instrumentation points

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking cost

Recall that we had two problems to solve:
Move work from dynamic to static analysis — phase-guided
» Reduce number of / pick good instrumentation points

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking
Phase Marking cost

» Phase marks cost (space and run-time)

» We need techniques to pick good insertion points
» Basic block

Basic block with look-ahead

Interval (intra-procedural)

Loop (inter-procedural)

v

v

v

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking

Basic Block

Basic block
» Similarity is done on basic blocks
» Transitions between blocks with different types
» Problem: blocks are small, cost is likely higher than gains

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Basic Block with Look-ahead

Basic block with look-ahead
» Instrument if next n blocks are of similar type
» Ensures switching for larger number of instructions
In some cases, captures loops
Problem: allows multiple switches in small loops
Problem: cost of optimizing a few blocks is still likely to

overshadow gains
©‘

vvyy

No look-ahead

basic block

of type A
mmmm phase

mark

Two generation
look-ahead

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking

Intervals

Interval (intra-procedural) Types

» Instrument if interval has a QA
predominant type o OB

» Intervals capture small loops

» All instructions are part of
some interval 9 9

» Problem: some intervals are
not loops (few instructions)

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking
Loop

Loop based (inter-procedural)

» Instrument loop based on
predominant type

» Remove instrumentation if part
of larger loop of same type

» Captures loops and nothing else
» Considers nested loops
» Considers function calls

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking

Static: Determine approximate similarity

ALl B A ﬂ?ﬂg’B_’ B[]+

void foo(){ »
for(i=0:n) ®
//cpu intense
for(i=0:n) A
//mem intense @

}

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking

Static: Predicting Similarity

» Not predicting actual behavior, just similarity
» Various metrics to consider

» instruction mix (int vs float, div, etc)
cache behavior
branch prediction accuracy
available ILP
» data structure(s)

» Proof-of-concept: 85% accuracy using few metrics

v

v

v

Phase-Based Tuning — Sondag and Rajan http://www.cs.iastate.edu/~ sapha

Phase Marking

Space overhead

» Space overhead

» May hurt instruction cache performance
» Increased binary file size

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.edu/~ sapha

Phase Marking

Space Overhead

© 80%
©
70%
v
O 60%
= 50%
(© 40% -
L 30% - ' 'L
>20%* i LJ |
O o | il
@ % \\\\\L\JééL\J[\Jéé\\\L\]E\jt
Q. oo AT Aol Qaﬁe@\‘og’bgé"ﬁac
NPT AR AR W N N o2 R T Y & QY gV Y ¢
V) SIS & P L F

Phase-Based Tuning — Sondag and Rajan /lwww.cs.iastate.edu/~ sapha

	Introduction
	Asymmetric Multicores
	Overview

	Approach
	Problem
	Hybrid Analysis

	Results
	Experimental Setup
	Overhead
	Improvements

	Conclusion
	Future Work
	Conclusion

	Appendix
	
	Phase Marking

