An Evaluation of Different Modeling Techniques
for Iterative Compilation

Eunjung Park, Sameer Kulkarni, and John Cavazos

Department of Computer and Information Sciences
University of Delaware
{epark, skulkarn, cavazos}@cis.udel.edu

Abstract. Choosing the right set of optimizations can make a signif-
icant difference in the running time of a program. However, compilers
typically have a large number of optimizations to choose from, making it
impossible to iterate over a significant fraction of the entire optimization
search space. Recent research has proposed “intelligently” iterating over
the optimization search space using predictive methods. An important
step in developing predictive methods for compilation is deciding how
to model the problem of choosing the right optimizations. In particular,
state-the-art methods in iterative compilation techniques use character-
istics of the code being optimized to predict good optimization sequences
to evaluate.

In this paper, we evaluate three different ways of modeling the prob-
lem of choosing the right optimization sequences using machine learning
techniques. We evaluate a novel prediction modeling technique, namely a
tournament predictor, that is able to effectively predict good optimiza-
tion sequences. We show that our tournament predictor out-performs
current state-of-the-art predictors and out-performs the most aggressive
setting of the Open64 compiler -0Fast on an average by 76% in just 10
iterations.

Keywords: compiler optimization, iterative compilation, machine learn-
ing, regression

1 Introduction

Most applications can greatly benefit from a fine-tuned set of compiler opti-
mization sequences. However, finding the right set of optimizations for each
application is a non-trivial task since the search space is extremely large. Re-
cent research has focused on intelligent search space exploration, in order to
efficiently search for the right optimization sequence [3,4,6,8,9,13,15,18,26]. In
this previous work, models are developed automatically using machine learning
or statistical techniques to predict good optimizations to apply based on charac-
teristics of the code being optimized. The advantage of these approaches is that
they use characteristics (or features) of the code and therefore a model has the
potential to predict optimizations that are specifically tailored to the code.

2 Eunjung Park, Sameer Kulkarni, and John Cavazos

An important step in using machine learning or statistical techniques to
choose optimizations to apply is how to model the problem. That is, when the
optimizer needs to make a decision, certain factors (the features) are inputs to a
decision function, whose output selects a choice from two or more optimization
possibilities. One way to phrase the optimization problem is to develop a decision
function that given a set of characteristics of a program, chooses whether an
optimization should be applied or not. We can develop several of these decision
functions each of which controls a specific optimization. Using these decision
functions, we can construct a sequence of optimizations to apply to the code
being optimized. A key property is framing the optimization decision problem
so that the function to be learned is as simple as possible.

This paper evaluates different ways of modeling the problem of finding good
sets of optimizations for code being optimized. We use a large set of kernels which
provides good coverage of a wide range of scientific applications. To evaluate
our models on a reasonable fraction of the optimization search space, we used
random search to generate a set of optimization sequences. This set of randomly
generated optimization sequences is used to train and evaluate our models.

We propose a new model to predict good optimization sequences to try. We
call this new model the tournament predictor and compared this predictor to two
current state-of-the-art prediction models. In total, we evaluate three different
ways of modeling the problem of choosing good optimization sequences to apply
to a program. For each of these prediction models, we use performance counters
to characterize the dynamic behavior of a program. In recent work, performance
counters have been shown to be better at characterizing applications than static
code features [6]. We collected performance counters for kernels and evaluated
those kernels with randomly selected optimization sequences. We generated our
proposed modeling techniques using regression technique with the performance
counter program features, then evaluated the generated models using leave-one-
out cross validation on our kernels.

The rest of the paper is organized as follows. Section 2 describes the prob-
lem of developing predictors for intelligent modeling and describes the different
predictors we evaluate. Section 3 gives an overview of our solution, especially
Section 3.1 describes each prediction models used in this paper and how we con-
struct them. Section 4 explains the characteristics of the programs used in this
paper. Section 5 lists the characteristics of each of the testbeds (both hardware
and software) that were used. Section 6 shows the results for each of the testbeds
used in our program. Section 7 lists and explains related work and their main
contributions and differences with our models. Section 8 presents our conclusions
and future work.

2 Learning to Optimize

Recent work has shown that iterative compilation applied to certain programs
can achieve significant benefits over the highest setting available in a compiler.
However, many of the proposed techniques for exploring optimizations (e.g., ge-

An Evaluation of Different Modeling Techniques for Iterative Compilation 3

netic algorithms [3], random search [19], statistical techniques [15], or exhaustive
search [18]) are expensive which limits their practical use. This has led compiler
researchers to propose using “intelligent” prediction models that focus explo-
ration to beneficial areas of the optimization search space [2,6,10,12, 20, 27].
Prediction models can reduce the cost of finding good optimizations, but in-
crease complexity in the design of the search function because models require
characterizing the program being optimized (e.g., with source code features or
performance counters), generation of training data, and a training phase. One
important step in designing the prediction model is how to phrase the prob-
lem of choosing good optimizations for a program. Several ways of modeling
the problem of finding good optimizations have been proposed in the literature,
but there has been little effort on evaluating these different methods. In this
paper, we show this step can have a significant impact on code being optimized.
Section 2.1 describes three different prediction models that we evaluate in this
paper. In Section 2.2, we presents preliminary experiment results showing the
potential of our new predictor, tournament predictors.

2.1 Modeling the Optimization Problem

A general formulation of the problem is to construct a search function that takes
a characterization of a program being optimized as input and generates a set of
one or more optimization sequences to evaluate as output (either implicitly or
explicitly). However, there are several ways to specifically model this problem.
In this paper, we evaluate three different methods of modeling the problem of
finding good optimization sequences, which we name the sequence predictor, the
speedup predictor, and the tournament predictor. Figure 1 depicts the models
that we evaluate in this paper which we describe in more detail below. We
briefly describe each of these predictors here and in more detail in Section 3.1.

Sequence Predictor Previous work [6,12] has proposed to model the prob-
lem by characterizing a program using performance counters and generating an
optimization sequence that will benefit the program. The performance counter
characterization serves as input to a model, and the model predicts a probability
distribution of optimizations to apply to that program. We term this model a
sequence predictor because it can be used to construct a sequence of optimiza-
tions.

Speedup Predictor Another recent model that has been proposed [5,11] takes
as input both the characterization of the program being compiled and an opti-
mization sequence, and it predicts as output the speedup of that optimization
sequence relative to a default optimization setting. We refer to this model as the
speedup predictor.

Tournament Predictor Finally, we propose a new method of choosing op-
timization sequences, the tournament predictor which takes as input a triple

4 Eunjung Park, Sameer Kulkarni, and John Cavazos

performance performance performance optimization
counters counters counters sequence O

@ - &
Output: probability of opt 1 Output: probability of opt o
being beneficial N being beneficial Output: predicted speedup of

given sequence O over abseline
N models, one per optimization.

(a) Sequence Predictor. (b) Speedup Predictor.
performance optimization optimization
counters sequence O, sequence O,

W

Output: predicted speedup difference
if O, is preferred over O,, then Output: positive
else Output: negative

(¢) Tournament Predictor.

Fig. 1. Three prediction models that are evaluated in this paper.

corresponding to the characterization of the program and two optimization se-
quences. This model predicts whether the speedup of the first optimization se-
quence will be more or less than the second optimization sequence. We can use
this predictor to provide an ordering of a set of optimization sequences to be
used for iterative compilation.

2.2 Preliminary Experiment of the Speedup and Tournament
Predictors

This section describes an experiment that shows our speedup and tournament
predictors are able to capture optimization speedup trends and therefore have
the potential to be used for predicting good optimizations to use for iterative
compilation. First, we generated a set of 200 randomly generated optimization
sequences constructed from 63 optimizations available in the Open64 compiler
suite. We evaluated these 200 optimization sequences on a set of 74 kernel bench-
marks and obtained speedups relative to the most aggressive optimization level
available in Open64 (-0fast). We then performed leave-one-out cross validation
to construct our speedup and tournament predictors, leaving out the bench-
mark ATAX (one of Polybench [24]) for testing, and training our models with the
remaining kernels. A regression algorithm was used to build our models. Our
training data consisted of performance counter characterization of our kernels
and the optimization sequences from all but one (left out) kernel.

An Evaluation of Different Modeling Techniques for Iterative Compilation 5

1.6 T T T T T T T T

Actual Speedup ——
1.4 Speedup Predictor -------
12 Tournament Predictor --------

1
0.8
0.6
0.4
0.2

0 | | | | | | | | |
20 40 60 80 100 120 140 160 180

Opt sequences sorted by actual speedup

Normalized speedup to -Ofast

Fig. 2. Speedup Predictor and Tournament Predictor for ATAX

Figure 2 shows how predicted speedups with the proposed models compares
to actual speedup for the one unseen ATAX kernel we used for our test. The
y-axis is the speedup obtained after applying a sequence, and the x-axis is the
optimization sequences sorted by increasing (actual) speedup. The solid line rep-
resents the actual speedup and two dotted lines show the speedup estimated by
two prediction models. As can be seen, the speedup and tournament predictors
can predict speedups for each sequences quite accurately. Therefore, using these
models to choose a good optimization sequences for an unseen program has the
potential to obtain significant improvements when used in iterative compilation.

3 Automatically constructing a model

This section describes details of how we trained our different models. We used
the HPCToolkit [1] to extract the performance counters to characterize each
program being optimized. Using HP CToolkit, we collected 29 performance coun-
ters to characterize each program. To collect the performance counter values, we
compiled each program using the -00 optimization level of the Open64 compiler.
The optimization level -00 was selected to minimize the effects of compiler op-
timizations on our performance counter characterization of the program. We
then sampled our optimization search space by randomly generating 500 opti-
mization sequences from 45 selected optimizations. The complete list of those
optimizations that were used for our experiments are discussed in Section 4.2.
We transformed each sequence to a vector ¢ by using a technique similar to
thermometer encoding to cover all optimizations whether they are taking binary
value or numeric values. For example, for the ‘prefetch’ optimization in Open64,

6 Eunjung Park, Sameer Kulkarni, and John Cavazos

we have 4 different possible values which are 0 through 3. We used ‘0 0 0’ for 0,
‘100’ for 1, ‘1 1 0’ for 2, and ‘1 1 1’ for 3. For optimizations taking binary val-
ues, we simply use 0 and 1 to signify the optimizaion is on and off, respectively.
We used each of our 500 randomly generated optimization sequences to compile
and execute the programs. We then ran each compiled version five times and
used the average running time. Once average running time is obtained, we can
calculate speedup over -Ofast as follows:

t
speedup = “Ofast

seq

where tofqst is the average time taken by the program when compiled with
-0fast, and t,.4 is the average time taken by the program when compiled with
a given optimization sequence. This speedup is used to train our models either
directly, e.g., with our speedup predictor, or indirectly, e.g., with our tournament
or sequence predictors.

3.1 Prediction Models

There are specific differences as to how the training and test sets are used and
represented depending on the type of the training model being developed. In this
section, we describe the three different modeling techniques that we evaluated
for iterative compilation.

Sequence Predictor We obtained a bit vector with size 67 bits, and we con-
struct separate predictor for each bit. Thus this model is a collection of 67
different models where each model is trained to predict whether a specific bit
should be 1 or 0. The input to each model is the performance counter character-
ization of a program, and the output of each model predicts a probability that a
particular optimization (associated with that output) will benefit the program.
Optimization sequences can be generated from this model by sampling at the
mode of the distribution of each model’s output. The training data for this model
consists of one sequence per benchmark with the best speedup. Once the predic-
tor is trained, we can use it to predict good sequences to apply to an “unseen”
program by feeding as input the performance counter characterization of the
program to the model. The model then outputs a probability p; for each bit pre-
dicting whether the bit should be 1 or 0. For optimizations taking binary values,
we simply decide whether we turn on or off a given optimization. For ones taking
more than 2 possibilities, we select a bit with the highest probability among bits
representing a specific optimization and decide which numerical value we use for
that optimization. Thus, all the outputs from a probability distribution which
we can then sample from to generate an optimization sequence to apply. This
model can be used to generate multiple optimization sequences by sampling as
many times as we wish.

An Evaluation of Different Modeling Techniques for Iterative Compilation 7

Speedup Predictor For this predictor, the model is trained to accurately
predict the speedup of the program relative to the program compiled by using
-0fast. The input to the model is the performance counter characterization of a
program and a bit vector describing the optimization sequence, and the output
from the model is the predicted speedup of that sequence relative to ~0fast. The
training data for this model consists of all 500 optimization sequences applied to
each kernel and the speedups obtained for each sequence relative to -Ofast. We
use this predictor to predict good optimization sequences for “unseen” program,
by evaluating sequences in order based on their predicted speedup. Another
way of evaluating the quality of this predictor is to use it to search for good
optimization sequences that were “unseen.” In other words, we can evaluate this
predictor in terms of how well it predicts the speedup of sequences that were
not used to train our model. We show that this predictor is effective at finding
good sequences for both “unseen” programs.

Tournament Predictor This model was trained to predict the better of two
different optimization sequences presented to the model. The inputs supplied to
this model were the performance counters for a program and two optimization
sequences that could be applied to the program. The output of the model is
either positive or negative depending on whether the model predicts the first
optimization sequence is better or worse than the second sequence, respectively.
Since it predicts speedup difference of two optimization sequences, not only does
the model predict which optimization sequence is better, but it also predicts
how big is the difference. One can view this as learning a relation over triples
(PC,0;,0j), where PC is the characterization of the program being optimized
and O is the set of optimization sequences from which the selection is to be
made. Those triples that belong to the relation define pairwise preferences in
which the first optimization sequence is considered preferable to the second. Each
triple that does not belong to the relation represents a pair in which the first
optimization is not better than the second. The process of selecting the best of
the optimization alternatives is like finding the maximum of a list of numbers. We
keep track of the current best optimization sequence, and proceed with pairwise
comparisons, always keeping the better of two sequences being compared. This
model can be used to generate sequences to try for a new program, by sorting
different optimization sequences based on the results of the pairwise comparisons.

4 Program Characteristics and Optimizations

This section describes how we characterize programs. Section 4.1 describes the
performance counters we collected to characterize programs, and Section 4.2
describes the optimization space we selected to construct our sequences from
our testbed compiler.

8 Eunjung Park, Sameer Kulkarni, and John Cavazos

4.1 Performance Counter Characterization

Each of our models predicts optimizations to apply to “unseen” programs that
were not used in training the model. To do this, we need to feed as input to our
models a characterization of the “unseen” program. We use performance counters
to collect dynamic features that describe the runtime behavior of a program.
Models using performance counter characteristics of programs have been shown
to out-perform models that use only static code features of program [6]. We used
29 different performance counters shown in Table 1.

Category of PCs List of PCs selected

Branch Related BR-CN, BR-INS, BR-MSP, BR-NTK, BR-TKN
Cache Line Access |CA-SHR

Level 1 Cache DCA, DCM, ICA, LDM, STM, TCM

Level 2 Cache DCR, DCW, ICA, STM, TCA, TCM, TCW
Floating Point FDV-INS, FML-INS, FP-INS, FP-OPS
Interrupt/Stall RES-STL

TLB TLB-DM

Total Cycle or Insts.| TOT-CYC, TOT-IIS, TOT-INS

Vector /SIMD VEC-INS

Table 1. Performance Counters: We collected 29 different performance counters to
characterize a program

4.2 Optimization Space

We selected five optimization phases from the Open64 compiler and from these
phases we selected 45 individual optimizations (shown in Table 2). These 45
optimizations make up the optimization space we will explore with our models.
Most optimizations came from global and loop nest optimization phases because
these optimizations have the most potential to obtain significant running time
improvements.

For our 45 optimizations, we generated a set of 500 random optimization
sequences. We then evaluated each sequence on the programs in our training set,
and measured their speedup relative to -Ofast, the most aggressive optimization
level available in Open64 compiler. The random optimization sequence and its
corresponding speedup are used as training data.

5 Experimental Setup

This section briefly describes the experimental setup. First, we describe the
hardware platform, OS, and optimizing compiler. Second, we describe the bench-
marks and the optimizations we used for our study.

An Evaluation of Different Modeling Techniques for Iterative Compilation 9

Optimization Phase|List of Optimizations

LNO blocking-size, csl, cs2, fission, full-unroll, fusion, interchange,
ou-prod-max, pf2, prefetch, prefetch-ahead, simd, trip-count

WOPT aggcem-threshold, aggstr, canon-expr, combine, dce-aggressive,
iv-elimination, spre, value-numbering

OPT alias, align-padding, div-split, goto, ptr-opt, swp,
unroll-size, unroll-times-max

CG cflow, local-sched-alg, ptr-load-use, use-prefetchnta

GRA optimize-boundary, prioritize-by-density

TENV frame-pointer

IPA callee-limit, ctype, dve, field-reorder, min-hotness, plimit,
pu-reorder, small-pu, space

Table 2. List of 45 Optimizations: We selected 45 optimizations from 7 optimization
phases in Open64 compiler.

5.1 Platform

We perform our experiments on a pair of Intel Quad CPU Q9650 machines, each
with 2.0GHz processors with 8GB of memory, running Ubuntu Linux release
8.04. We use the HPCToolkit [1] along with latest PAPI 3.6 hardware counter li-
brary [21] to collect hardware performance counters for the benchmarks. Table 1
gives a brief description of the counters we used. We collect performance coun-
ters using level -00, so that the characteristics of a benchmark are not masked
by higher optimization levels (e.g., ~-0fast). We used the open-source Open64
compiler version 4.2.1 [22], and all speedups reported are relative to -0fast,
the most aggressive optimization level available in this compiler. We used linear
regression in Weka [16] 3.6.2 to build each prediction model.

5.2 Benchmarks

We decided to experiment with small pieces of code that would allow us to
quickly evaluate different modeling techniques. We collected a large set of func-
tions and kernels from various well-known benchmarks suites (e.g., UTDSP,
NAS, Linpack, and Polybench) for our study. However, we noticed that several of
these kernels had large variability for different runs of the same optimized code.
In order to reduce this variability, we flushed the cache before every run to re-
duce possible cache interference. For the remaining code, we used the standard
leave-one-out cross validation procedure to evaluate our models. That is, the
models were trained using N — 1 benchmarks and tested on the Nth benchmark
that was left out.

6 Experimental Results

This section describes our experiment results that we conducted to evaluate
our different modeling techniques. In Section 6.1, we discuss experiment results
of three different modeling techniques by evaluating predicted optimization se-
quence for unseen programs with 10 evaluations. In Section 6.2, we discuss how
two modeling techniques performs for up to 100 evaluations.

Eunjung Park, Sameer Kulkarni, and John Cavazos

10
4
- quuence ——
7] peedup ==
&35 Tournament
Q
e 3r
o
>
3 25
[0}
o
n 2+
°
N
5 1.5 F
£
S 1F
z

B L 5 5 b b b, Do, b b o 4 <
"oy oy ep ooy oy, 2,0, M g e el
Sy Sy, 0 0 U U K T TR S
B T TRGT TR Ry, sy, Y Y,
Y Sy % e B
UTDSP Kernels
— 3 T
0 Sequence
K] Speedup E===
(@) Tournament m—
[25 -
e
Q
3 of i
D
10}
Q
0 45t -
ge]
o3
N
© 1k i
£
o
z 0.5
' (A <5, <5 <0, < <o 4o < £, < <5 &,
0% 07787577 5% TS 0w
Livermore Loops, NAS, and Linpack Kernels
4.07
25 T T T T T T T T T T 3L 4.OIG T T T T T T T T
Sequence
Speedup T
— Tournament m—
17}
g 2r
Q
e
o
> 15}
S
D
o}
o
wn
g 1F
10}
N
©
£
5 05}
=z
0 oy 8,05 o, o %, %, D %5 04.95,.96,9,90 OrSonron % %40/, %0 S0, L LS
R N N A I AN IR KL NIV A
B S A R I N S
%9 0%, 6’/’%;;4,5;0@0 b

Polybench Kernels

Fig. 3. This figure shows the maximum speedup obtained with 10 predictions for each
predictor when trained using regression models. On average the sequence, speedup,

and tournament predictors achieve 5%, 69%, 75% speedup respectively.

An Evaluation of Different Modeling Techniques for Iterative Compilation 11

Regression

2

1.9
% 18
i —Regression Speedup Predictor
Q 17 L
] / —Regression Tournament Predictor
2 16
S
2/
3 1s
o
[
o 14
o0
(]
<
g 13
<

1.2

11

1

10 20 30 40 50 60 70 80 90 100

Number of evaluations

Fig. 4. This speedup of our tournament and speedup predictors (trained (from left to
right) using Regression) averaged across all our kernels versus the number of optimiza-
tion sequences evaluated.

6.1 Leave-One-Out Cross Validation on Kernels

To begin evaluating our modeling techniques, we used leave-one-out-cross vali-
dation over our set of kernels. This allowed us to evaluate the relative advantages
between different predictor methods. Here, we used the same 500 optimization
sequences for both training and testing. That is, we train a model on 500 opti-
mization sequences applied to N — 1 kernels, then we use the model to predict
which of those same 500 sequences should be applied to the Nth program that
was left out. We have recent results that show a model trained on one set of
optimization sequences is effective at predicting the performance of ”unseen”
optimization sequences on an "unseen”, but this is beyond the scope of this pa-
per. Figure 3 shows the same results using regression to train each predictor.
For this experiment, we have set the number of evaluations selected by each
model to 10 evaluations. We found that regression performs well depending on
the modeling techniques. The sequence predictor gave the least improvement
of the three predictors evaluated, achieving a 6% on average.. The tournament
predictor performs best achieving 76% average speedups across the kernels for
regression. The speedup predictor also performs well, but slightly worse than the
tournament predictor, by achieving 70%.

6.2 Performance Versus Number of Evaluations

While Figure 3 shows results for 10 evaluations, in this section we give a dif-
ferent view of how our two top predictors, namely the speedup and tournament

12 Eunjung Park, Sameer Kulkarni, and John Cavazos

predictors, perform as a function of the number of evaluations. Figure 4 shows
the performance achieved averaged across all the kernels versus the number of
sequences evaluated up to a maximum of 100 for the speedup and tournament
predictors.

Both predictor reached to maximum possible speedup with similar curve.
The speedup predictor achieves better speedup than the tournament predictor
until 7 evaluations. The tournament predictor starts to perform better then the
speedup predictor from 8 evaluations, and achieves T6speedup predictor to reach
this speedup in 18 evaluations.

7 Related Work

A very innovative approach to iterative compilation was proposed by Parello
et al. [23] where they tried to use performance counter at each stage of the
tuning process to propose new optimization sequences. These sequences would
be evaluated and based on the new performance counters they would choose new
optimizations to try. They manually developed a decision tree to assist them
in choosing which optimizations to apply based on performance counters. Even
though this was a very systematic approach, the time to develop the decision tree
was several weeks for each benchmark. Our technique does not need to generate
performance counters during each iteration, but uses various past runs along
with the initial performance counters to learn the best possible optimization
sequence.

In the recent years a lot of research has shown the benefit of iterative compila-
tion [8,9,13,15,17]. Iterative compilation has been shown to regularly outperform
the most aggressive compilation settings of most commercial compilers and has
been shown to be comparable to hand-optimized library functions [14,25,28,29].

Almagor et al. [3] take a more radical approach to reduce the total number
of evaluations. They examine the structure of the search space, in particular
the distribution of local minima relative to the global minima and devise new
search based algorithms that outperform generic search techniques. Kulkarni et
al. [18] introduced a system where they tried to use databases to store previ-
ously tested code and thus save on running time. They also disabled some op-
timizations that did not seem to improve the running time of the kernel. These
techniques are only effective when programs are extremely small, such as those
used in embedded domains. Cooper et al. [8] use genetic algorithms to solve the
compilation phase-ordering problem. They were concerned with finding “good”
compiler optimization sequences that reduced code size. Their technique was
successful at reducing code size by as much as 40%. Unfortunately, their tech-
nique is application-specific. That is, a genetic algorithm has to retrain for each
program to decide the best optimization sequence for that program.

Several researchers have also looked at using machine learning to construct
heuristics that control a single optimization. Stephenson et al. [26] used genetic
programming (GP) to tune heuristic priority functions for three compiler opti-
mizations: hyper block selection, register allocation, and data prefetching within

An Evaluation of Different Modeling Techniques for Iterative Compilation 13

the Trimaran’s IMPACT compiler. For two optimizations, hyperblock selection
and data prefetching, they achieved significant improvements. However, a closer
look at the results indicate that all the improvement was obtained from the ini-
tial population indicating that these two pre-existing heuristics were not well
tuned. For the third optimization, register allocation, they were able to achieve
on average only a 2% increase over the manually tuned heuristic.

In the work by Cavazos et al. [7] they used supervised learning to create a
predictor model specialized to decide to enable or disable instruction scheduling.
This reduced up to 75% of the scheduling effort without loosing any performance.
Recently, Cavazos et al. [4] describe using static code features and supervised
learning to control several optimizations to apply during method compilation in
a JIT compiler. Since Java methods are typically small, static code features were
successfully used to characterizing them.

For example, Lau et al. [19] present an online framework, called performance
auditing, that allows the evaluation of the effectiveness of optimization deci-
sions. The framework permits on line empirical optimization, which improves
the ability of a dynamic compiler to increase the performance of optimizations
while preventing performance degradations. Instead of using models to predict
an optimization’s performance, these approaches compile versions of the same
method with different optimization settings chosen randomly. Then, they run
each of these versions evaluating their performance empirically on the real ma-
chine. These approaches worked well for single optimizations or for a very small
set of optimization sequences to be tested; however, they will be impractical for
finding good sequences of optimizations from a large set of optimizations. Also,
predictive modeling is not used to decide the optimized versions of the code to
try.

8 Conclusion

In this paper we address the problem of developing a good modeling technique
for predicting compiler optimizations by using performance counters to auto-
matically construct optimization sequences. We do this by using one of machine
learning techniques, regression, that predict good code optimization sequences
to apply given a program’s performance counter features. We evaluated three
different predictors, sequences, speedup, and tournament predictors and show
that speedup and tournament predictors perform well, especially tournament
predictor. For future works, we expect to apply more various machine learning
algorithms to build our prediction models. We can also extend our testbed to
large applications, different compilers.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent., N.R.: Hpctoolkit: Tools for performance analysis of optimized parallel
programs. Concurrency: Practice and Experience. To appear. (2010)

14

10.

11.

12.

13.

14.

Eunjung Park, Sameer Kulkarni, and John Cavazos

. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., OBoyle, M., Thomson,

J., Toussaint, M., Williams, C.: Using machine learning to focus iterative opti-
mization. In: Proceedings of the International Symposium on Code Generation
and Optimization. pp. 295-305 (2006)

Almagor, L., Cooper, K.D., Grosul, A., Harvey, T.J., Reeves, S.W., Subramanian,
D., Torczon, L., Waterman, T.: Finding effective compilation sequences. In: Pro-
ceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, and Tools for Embedded Systems. pp. 231-239. ACM Press, New York, NY,
USA (2004)

Cavazos, J., O'Boyle, M.: Method-specific dynamic compilation using logistic re-
gression. In: Proceedings of the ACM SIGPLAN ’06 Conference on Object Oriented
Programming, Systems, Languages, and Applications. ACM Press, Portland, Or.
(October 2006)

Cavazos, J., Dubach, C., Agakov, F., Bonilla, E., O’Boyle, M.F., Fursin, G.,
Temam, O.: Automatic performance model construction for the fast software ex-
ploration of new hardware designs. In: Proceedings of the International Conference
on Compilers, Architecture, And Synthesis For Embedded Systems (CASES 2006)
(October 2006)

Cavazos, J., Fursin, G., Agakov, F.V., Bonilla, E.V., O’Boyle, M.F.P., Temam,
O.: Rapidly selecting good compiler optimizations using performance counters. In:
CGO. pp. 185-197 (2007)

Cavazos, J., Moss, J.E.B.: Inducing heuristics to decide whether to schedule. In:
Proceedings of the ACM SIGPLAN ’04 Conference on Programming Language
Design and Implementation. pp. 183-194. ACM Press, Washington, D.C. (June
2004)

Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: Workshop on Languages, Compilers, and Tools for
Embedded Systems. pp. 1-9. ACM Press, Atlanta, Georgia (July 1999), citeseer.
nj.nec.com/cooper99optimizing.html

Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for
the 21st century. Journal of Supercomputing 23(1), 7-22 (August 2002)

de Mesmay, F., Voronenko, Y., Piischel, M.: Offline library adaptation using auto-
matically generated heuristics. In: International Parallel and Distributed Process-
ing Symposium (IPDPS) (2010)

Dubach, C., Cavazos, J., Franke, B., O’Boyle, M., Fursin, G., Temam, O.: Fast
compiler optimisation evaluation using code-feature based performance prediction.
In: Proceedings of the ACM International Conference on Computing Frontiers
(May 2007)

Dubach, C., Jones, T.M., Bonilla, E.V., Fursin, G., O’Boyle, M.F.: Portable com-
piler optimization across embedded programs and microarchitectures using ma-
chine learning. In: Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO) (December 2009)

Franke, B., O’Boyle, M., Thomson, J., Fursin, G.: Probabilistic source-level
optimisation of embedded programs. In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems. pp. 78-86. ACM Press, New York, NY, USA (2005)

Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2), 216-231 (2005), special issue on ”Program Generation,
Optimization, and Platform Adaptation”

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.

An Evaluation of Different Modeling Techniques for Iterative Compilation 15

Haneda, M., Knijnenburg, P.M.W., Wijshoff, H.A.G.: Automatic selection of com-
piler options using non-parametric inferential statistics. In: Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Techniques. pp.
123-132. IEEE Computer Society, Washington, DC, USA (2005)

in Java, W..D.M.S.: http://www.cs.waikato.ac.nz/ml/weka

Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P.: Combined selection of tile sizes
and unroll factors using iterative compilation. In: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques. p. 237. IEEE
Computer Society, Washington, DC, USA (2000)

Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., Jones, D.: Fast searches
for effective optimization phase sequences. In: Proceedings of the ACM SIGPLAN
’04 Conference on Programming Language Design and Implementation. pp. 171—
182. ACM Press, New York, NY, USA (2004)

Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: using hot
optimizations without getting burned. SIGPLAN Not. 41(6), 239251 (2006)
Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to automatic
production of compiler heuristics. In: AIMSA ’02: Proceedings of the 10th Inter-
national Conference on Artificial Intelligence: Methodology, Systems, and Appli-
cations. pp. 41-50. Springer-Verlag (2002)

Mucci, P.: Papi — the performance application programming interface.
http://icl.cs.utk.edu/papi/index.html (2000)

Open64, L.: http://www.open64.net (2006)

Parello, D., Temam, O., Cohen, A., Verdun, J.M.: Towards a systematic, pragmatic
and architecture-aware program optimization process for complex processors. In:
SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing. p. 15.
IEEE Computer Society, Washington, DC, USA (2004)

Polybench: http://www-roc.inria.fr/ pouchet/software/polybench

Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J.,
Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W.; Rizzolo, N.:
Spiral: Code generation for dsp transforms. Proceedings of the IEEE 93(2), 232—
275 (2005), special issue on ”Program Generation, Optimization, and Platform
Adaptation”

Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly, U.M.: Meta optimization:
Improving compiler heuristics with machine learning. In: Proceedings of the ACM
SIGPLAN ’03 Conference on Programming Language Design and Implementation.
pp. 77-90. ACM Press, San Diego, Ca (June 2003)

Stephenson, M., Amarasinghe, S.P.: Predicting unroll factors using supervised clas-
sification. In: Proceedings of the International Symposium on Code Generation and
Optimization. pp. 123-134 (2005)

Vuduc, R., Demmel, J.W., Bilmes, J.A.: Statistical models for empirical search-
based performance tuning. Int. J. High Perform. Comput. Appl. 18(1), 65-94
(2004)

Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: SC
’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing. pp. 1-27.
IEEE Computer Society, Washington, DC, USA (1998)

