
Sustainable Learning-Based Optimization
Based on RKNN Outlier Detection

Shun Long

1 Department of Computer Science, JiNan University, Guangzhou 510632, P.R.China

2 Key Laboratory of Computer System and Architecture, Institute of Computing Technology,
China Academy of Science, Beijing 100080, P.R.China

tlongshun@jnu.edu.cn

Abstract. Iterative compilation has been proved a successful approach to
achieve high performance, particularly if enhanced with machine learning
techniques. However, we point out in this paper that the capability of such
learning-based compilers relies heavily on the training examples chosen, which
hinders their applicability in general scenarios. To tackle this pitfall, we use
reverse K-nearest neighbor (RKNN) algorithm to help a compiler to decide
whether to use existing prior experience directly, or turn to launch an
optimization space search for outlier programs instead. This approach is
proposed as a supplement instead of a replacement of the existing learning-
based iterative optimizations, in order to make the latter sustainable and capable
of dealing with arbitrary programs given. Preliminary experimental results are
given to demonstrate its effectiveness.

Keywords: iterative optimization; machine-learning; program feature; outlier;
Reverse K-Nearest Neighbours

1 Introduction

Modern compilers use various optimization heuristics and performance models in
order to fully exploit the potential of underlying hardware in pursuit of higher
performance. However, fixed heuristics and static performance models have
difficulties in coping with the rapidly evolving nature of modern architectures, and
therefore have difficulties in providing portable high performance. Compilers are
expected to evolve accordingly, i.e. capable of automatically fine-tuning itself for a
given architecture, without dramatic change to its internal structure.

Iterative optimization[6] is a promising approach to achieve portable high
performance. Given a program, an iterative compiler explores an optimization space
composed of various transformations, in search for good points (i.e. transformation
sequences) which yield high performance. Various approaches[1,4,5,15] have been
proposed to apply machine learning[14] techniques to accelerate optimization space
exploration. They can not only effectively identify good points within the space for a
given program, but also accelerate the exploration process via the use of the
compiler’s prior optimization experience with various programs.

Funded by 1) The Key Laboratory of Computer System and Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, 2) State Key Laboratory of Software Engineering in Wuhan University
(SKLSE2010-08-31) and 3) The Science and Technology Planning Project of Guangdong Province, China
(No.2010A032000002).

However, most of these approaches are based on the assumption that the compiler
has been properly trained with good-enough examples, i.e. programs which
demonstrate significant performance improvement if proper transformations are
applied. Usually, compiler developers carefully choose these training examples with
hopes that they will suit the future programs. Nevertheless, when an unfamiliar new
program (i.e. an outlier) is encountered, its performance remains a doubt. This
indicates that training example selection plays a decisive part in the success of
learning-based optimization. To the best of our knowledge, this problem has not been
properly addressed yet.

To put learning-based optimization into practice, we must address this pitfall of
these current approaches. We propose in this paper the idea of using reverse K-nearest
neighbor (RKNN)[7] approach to achieve a sustainable iterative compiler framework
whose performance evolves with arbitrary programs encountered and is therefore
independent of the training examples provided. Given arbitrary programs, it can decide
whether to explore from scratch the predefined optimization space composed of
various transformations, or to directly apply its experiences learned from other familiar
programs it has optimized before. This decision is based on its observation on the
given program and those it has optimized before, particularly the similarities in
between. Preliminary experimental results show that it can make proper decisions
when given a sequence of programs, and its optimization effectiveness gradually
improves as more experiences are learned from the training examples.

The organization of this paper is as follows. First, section II briefly reviews the
learning-based optimization paradigm, particularly its pitfall in its dependency on
training examples provided. Section III first presents our goal of a sustainable
learning based optimization whose performance does not rely on training examples
explicitly given. It then presents a brief introduction of the RKNN algorithm, before
discusses the RKNN-based approach which the compiler uses to identify outlier
programs. Our implementation is then given in section IV, together with some
preliminary experimental results. Some related works are discussed in section V,
before some concluding remarks in section VI.

2 Learning Based Optimization and Its Training Example Pitfall

A typical iterative compilation paradigm is outlined in [6]. When a program is
encountered, the compiler uses some heuristics to generate an optimized version,
before launching a test run. It then decides whether or not to make further attempts
based on the runtime profiles collected. This process is repeated until a good enough
optimization is found or the optimization budget is reached.

In search of good optimization scheme for each program encountered, the compiler
has a large optimization space to explore, which is composed of arbitrary combinations
of a collection of transformations, together with their corresponding options and
parameters. Various algorithms have been proposed to accelerate this iterative process.
They are based on either heuristic search[2,6,8,17] or machine learning
techniques[1,4,15], or a hybrid solution[5]. These prior works have demonstrated the
efficiency of learning based approaches.

Fig.1. Given six programs within a feature space, A, B, C and D are close to each other and
therefore considered similar. A compiler may directly apply its experience with anyone to the
other three, and vice versa. However, X and Y are far away from them and therefore considered
as outliers. The compiler cannot apply its experience with A, B, C and D to these outliers.

However, it is worth noting that the success of learning-based optimization rests on

not only on the learning approaches used and the optimization space it considers, but
also on the quality of training examples given to it. Good quality training examples
should be both representative and useful, which means that they shall be sufficiently
similar to the programs that the compiler may encounter in the future, and that they
shall demonstrate significant performance improvement if proper transformations are
applied. However, if the new programs are not similar enough to the training examples,
the compiler might not be able to draw good enough heuristics from such so-called
outliers. For instance, Fig.1 illustrates six programs (namely A, B, C, D, X and Y) in a
feature space. Since A, B, C and D are close (and therefore similar) to each other, the
compiler may directly apply to any one of them its optimization experience learned
from the other three. However, its experience with these four programs might not be
applicable or suitable for X and Y because they are considered outliers (since both X
and Y are some distances away from the other four programs). In addition, if the
training examples do not provide heuristics to what transformations to apply in order to
achieve performance improvement, they would be of little use. In both cases, the
effectiveness of learning-based optimization remains doubtful.

This suggests that training example selection plays a decisive part in the success of
learning-based optimization. Most prior works this area assume that the compiler has
been properly trained with good quality examples, which well suit the programs to be
encountered. Few have properly addressed the issue of how these examples should be
selected. Instead, they pick those examples manually, based on the developers’
expertise.

3 A Training Example Selection Independent Approach

Learning based optimizing compiler should be sustainable if we aim to put it into
practice. By sustainable, we mean that its effectiveness should be independent of the
training examples provided, and evolve with more programs encountered. Therefore,
a solution must be found for the above training example pitfall. To the best of our
knowledge, this has not been properly addressed yet.

3.1 A Sustainable Learning-Based Compilation Paradigm

There are two approaches to tackle this training example pitfall. First, we could
develop algorithms capable of automatically generating or selecting good-quality
training examples for a learning compiler. Prior works[2,8] has provided advices on
how to identify good transformation sequences from the given training examples.
However, the fact that a compiler could encounter any arbitrary program suggests that
the candidate program space is boundless. It is therefore hard to predict whether a
training example is representative-enough unless we know in advance what programs
will be encountered. Alternatively, we could develop techniques which enable the
compiler to both deal with arbitrary programs given in arbitrary order and accumulate
its experience from optimizing them in an iterative manner. When a program is
encountered, the compiler first decides whether its prior optimization experience is
applicable. If yes, then applies it directly, otherwise it turns to iterative exploration of
the optimization space instead. Time and resource permitted, the search could last for
as many rounds as necessary.

Although the latter approach might not promise instant success, we believe it
provides more sustainable performance improvement over time. Furthermore, a
compiler can therefore distinguish both less representative and less useful examples
when more transformations are tested and more programs are encountered. These
examples could either be transferred to a second-level knowledge-base or simply be
abandoned when necessary, in order to keep the training set compact whilst
maintaining a reasonable efficiency. This in return will benefit the learning approach.
More importantly, such an evolutional approach will lead to a more sustainable
compiler whose performance is independent of the training examples given.

We propose in this paper the idea of using reverse K-nearest neighbor (RKNN)
algorithm to achieve a sustainable learning-based compiler, whose performance
evolves with more programs encountered but is independent of the training examples
provided. Given arbitrary programs, it can decide, as illustrated in Fig.2, whether it
shall explore from scratch a predefined optimization space composed of various
transformations, or directly apply its experience learned from other programs it has
optimized before. This decision is based on its observation on both the new program
and those it has optimized before, particularly the similarities in between. It is worth
noting that the learning-based branch is not necessarily a one-off as expected, as some
learning approaches might not be able to provide explicit optimizations instructions
directly. Instead, the experience may come in the form of heuristics about some
promising regions within the whole optimization space, as some prior related works[8]
demonstrated.

This sustainable learning based compilation process (as illustrated in Fig.2) is just
an extension to that presented in [6]. The newly added path (indicated by the grey
boxes) indicates that, if the compiler has previously optimized programs sufficiently
similar to the new one, it can directly apply its experience (as shown by the three steps
followed), instead of heading for iterative search. This grey branch stands for the
standard learning-based optimization process suggested by many prior works.

The only problem remained is to decide on whether this new program is
sufficiently similar to programs encountered before. We use reverse K-nearest
neighbors algorithm to solve this problem, as explained below.

Fig.2. The sustainable learning-based optimization process proposed

3.2 Reverse K-Nearest Neighbor Algorithm

Reverse K-nearest neighbors (RKNN) algorithm[7] is considered as a
complementary to the K-nearest neighbors (KNN) algorithm[14], which is a simple
instance-based learning approach used for classifying object based on closest training
examples in the feature space. It is worth noting that the nearest neighbor relation is
not symmetric (i.e. the set of points closest to a query point is different from the set of
points that have the query point as their nearest neighbors). RKNN aims to identify the
influence of a query object on the whole data set by classifying it via a majority vote of
its K nearest neighbors.

KNN considers all training examples as vectors in a multi-dimensional feature
space, each with a class label. Euclidean distance is usually used to calculate the
distance between vectors. Given a query q, RKNN retrieves all the points p∈P that
have q as one of their k nearest neighbors. Specifically, RKNN(q) = {p∈P | dist(p,q)
≤ dist(p,pK), where pK is the K-th farthest nearest neighbor of p}. Intuitively, RKNN
algorithm extends KNN by returning all objects that have q among their actual K-
nearest neighbors. Given the query/object q and a database D of n objects, the set of K-
nearest neighbors of q is the smallest set S that contains at least k objects from D such
that the distance between q and any object o within S is less than that between q and

any object o’ within D-S. The set of reverse K-nearest neighbors of q is therefore
defined as the join set of all the objects which have q in their K-nearest neighbor sets.
Various weights could be given to different dimensions in order to achieve better
classification by the use of evolutionary algorithms or mutual information of the
training data with the training classes.

Take the six programs illustrated in Fig.1 as an example. Both KNN and RKNN
can correctly group A, B, C and D as near neighbors for each other. However, KNN
still considers Y and D as X’s nearest neighbors, because there is no other program
closer to it. Even A, B and C will be included in X’s K-nearest neighbors if K is greater
than 2. This will result in the compiler applying to X improper/unsuitable optimization
heuristics learned from them. However, with RKNN, the compiler can correctly
identify X and Y as unfamiliar outliers and launch iterative search for them instead.

The naive RKNN algorithm is a computational intensive one, due to the cost of
KNN algorithm, especially when the training set grows large. In addition, KNN tends
to let the class with the most frequent examples dominate the prediction of a new
object due to the majority voting mechanism it uses. Furthermore，the prediction
accuracy could be degraded by noisy or irrelevant features.

3.3 RKNN in Learning-Based Optimization

Ideally, a sustainable learning-based compiler does not need an explicit training
process before being put into practice. Instead, it will include in its training set all the
programs it has encountered since its deployment. When a new program is encountered,
the compiler shall decide at first whether it has sufficient prior experience to deal with
it. If yes, it may directly apply its experience. Otherwise it shall turn to the iterative
optimization instead. This decision is based on the set of programs it has encountered
before, i.e. whether or not this new program is sufficiently similar to anyone within this
set. In addition, its optimization experience of this new program shall also be added to
this set. Therefore, with more and more programs encountered, the compiler
accumulates its experience with an ever-growing training set.

We call a program an outlier if it is not sufficiently similar to anyone the compiler
has encountered before. Prior works in many areas show that RKNN algorithm is
effective in outlier detection. We therefore use it to detect whether a program
encountered is an outlier or not, so that the compiler can take proper action accordingly.
The algorithm is outlined in Fig.3.

We develop a data structure to support the above algorithm in order to ensure its
efficiency when more programs are encountered. Since each feature vector FV in list L
represents a program in the training set, each FV is attached with a list of its K-nearest
neighbors. Each element of this attached KNN list is a <ref, dist> pair, where ref is a
reference to a program in FV’s k-nearest neighborhood, and dist the corresponding
distance. This KNN list is kept sorted in either ascending or descending order of these
dists so that, if a new program PV is found closer to FV than anyone in this KNN list of
FV, it can easily replace the far-most one in the list. For the new program PV, its KNN
list is also constructed in the same manner when its distances with all the FVs are
calculated during the process in Fig.3.

// given a list L of program feature vectors FVis, each
// stands for a program the compiler has encountered
// given a new program P
Capture the features of the new program P
Construct its feature vector PV
Set S to be empty // let S be PV’s RKNN set
for (each FVi in L) {
 calculate d, the distance between PV and FVi
 if (d is shorter than that of any of FVi’s KNN’)
 { // PV is considered among FVi’s KNN
 Replace FVi’s farthest neighbor with PV
 add FVi to S
} }
Add PV to L
If (S is empty) { Program P is considered an outlier }

Fig.3. Pseudo code for outlier detection via RKNN

Different features may have different ranges of raw values, therefore they shall first
be unified before similarity calculation. A simple approach is adopted which uses the
ratios instead of the raw values of all the features. Given two nodes A and B of feature
vectors <A0, … An> and <B0, … Bn> respectively, their similarity is calculated as
below,

Similarity (A, B) = ∑n
i=0（wi x (max(Ai,Bi) / min(Ai,Bi)) (1)

where wi are weights given to different features according to their significance, and
thresholds tis are predefined for all the features we considered. For instance, given a
threshold t=1.6, two loops of sizes 300 and 400 are considered similar because
400/300=1.33<1.6, whilst those of 400 and 200 are not as 400/200=2>1.6. More
elaborate algorithms could be adopted for more accurate classification.

However, two loops of sizes 4000 and 3000 will still be considered similar
although they are far apart in fact. A valid distance for each feature (for instance 100
for loop size) is introduced to tackle this problem. These valid distances define a valid
range for each program/point P, where other points (Q0, Q1, …) within this range are
considered candidates for neighborhood, and those beyond are not (even if P has no
neighbor so far). It is worth noting that this valid distance is not considered as a
predefined constant threshold. Instead, it is given an initial value when the compiler is
first deployed. When more programs are encountered, the median of P’s valid
neighbors (maximum K) can be obtained from the above data structure used. The valid
distance will be therefore periodically updated to be the average of these medians (of
all Ps) so that it could be shortened with closer examples encountered. Intuitively, this
means that, with more training examples, the experience obtained from each example
will turn more specific for only certain types of similar programs.

Once the RKNN set of program P is decided, the compiler adopts a simple ballot
mechanism to select transformations from its prior experience with programs in this set.
The transformations voted by (i.e. appear in) the majority of programs in this RKNN
set will then be applied to P in the order that wins the ballot. Further improvements of
this mechanism will be made in our future work.

Table 1. Loop-level program features used

Loop Features
For loop is simple?
Loop nest depth
For loop has constant lower and upper bounds?
For loop has constant stride?
Size of the outmost loop
Number of array references in loop
Number of instructions in loop
Number of floating point variables in loop
Number of integer variables in loop
Loop contains an if-construct?
Loop iterator an array index?
All loop indices are constant?
Loop has branches?
Array accessed in linear manner?
Loop Strides on leading array dimensions only?

Table 2. Source-to-source transformations used

Loop Features
Loop unrolling (with factors 2, 3, 4)
Loop tiling (with sizes 3, 4, 5, 6)
Array padding (with size 2, 4)
Hoisting of loop invariants
Copy propagation
Common sub-expression elimination
Constant propagation
Dead code elimination

4 Preliminary Experiments and Results

In order to demonstrate the effectiveness of our proposed RKNN-based approach,
we have carried out some preliminary experiments, whose details are specified below,
before the results being presented and analyzed. For simplicity concern, we consider
only 5 of each program’s neighbors, i.e. K=5 in our experiments.

4.1 Program Features and Transformations

We consider fifteen loop-level features (as listed in Table.1) which we believe shall
be sufficient to capture program characteristics. These features are chosen from [1] and
listed in Table.1. They are considered equally important in our preliminary
experiments. A source-level feature extractor is developed for our experiments.

Eight source-to-source transformations are considered in our preliminary
experiments, as listed in Table.2. Considering the parameters for three of these
transformations (loop unrolling, tiling and array padding), we have 14 different
transformations in total.

It is worth noting that the RKNN approach we propose in this paper is independent
of not only the program features but also the transformations considered here.

A random search algorithm was developed for the compiler to search within the
resulting optimization space once it identifies a given program as an outlier. To
generate a transformation sequence, this algorithm first randomly decides a sequence
length (maximum 14), then creates the sequence by filling it with transformations
randomly chosen from Table.2, The resulting sequence is then submitted to the
compiler for evaluation. Considering the fact that many prior work in optimization
space exploration[2][6] show that random search is capable of identifying good points
quickly, we stop the search after 30 iterations. In addition, we also use this random
search algorithm to determine the best performance improvement for each program in
our experiments, in which case the search will last for 60 iterations.

In our experiments, we simplified the above ballot mechanism into an instance-
based learning one. For each non-outlier N, its nearest neighbor N’ is identified and the
three transformation sequences which yield the top three speedups for N’ are selected
for N. The average of their performance achievements are considered as the final result.

4.2 Experimental Setup and Methodology

To keep our experiments at a reasonable and traceable scope, we chose benchmark
programs from UTDSP[10] kernels (fft, fir, iir, latnrm, mult and lmsfir) and some
Livermore kernels from BenchNT Classic Numeric[12] benchmark suites. We
generated for each kernel multiple versions of various data sizes, as listed in Table.3.

Prior related works indicate that search-based algorithm can quickly identify points
of significant speedups within a reasonable number of iterations, and not much further
improvement can be achieved afterward. Therefore, we first applied the random search
algorithm given in the previous subsection on each of these 43 selected kernels, in
order to find out their best performance improvements. This search process is repeated
for 60 iterations for each benchmark kernel B (as explained above), and the highest
speedups achieved PB is identified. This is repeated for five times for each kernel B,
and considered the average of PB,i (i ∈[1,5]) as the best performance achievable for B,
Bbest, as shown in the Highest Speedup columns in Table.3.

Next, we randomly generated 100 different submission sequences, each of which
specifies a different order in which these 43 kernels are submitted for compilation.
Next, each sequence SubSeq was tested for five times in order to minimize the noise
impact. Similarly, we consider the final performance of each kernel program B in
position i of SubSeq as the average of its performance over these five tests. This
performance PB,SubSeq,i is compared against the Bbest collected in the previous step,
which indicates the effectiveness of the proposed approach.

Table 3. The 43 kernels and their highest speedup achieved after 60 iterations of random search
(i.e. Best of Random Search as in Figure.4)

Kernel Data Size Highest
Speedup

Kernel Data Size Highest
Speedup

fft _256 1.41 kernel7 _1000 1.05
 _1024 1.65 _2000 1.03
fir _32_1 1.54 _3000 1.05
 _256_64 1.61 kernel8 _1000 1.23
iir _1_1 1.21 _2000 1.21
 _4_64 1.19 _3000 1.27
latnrm _8_1 1.34 kernel9 _1000 1.15
 _32_64 1.37 _2000 1.16
lmsfir _8_1 1.39 _3000 1.21
 _32_64 1.44 kernel12 _1000 1.07
mult _100 1.21 _2000 1.05
 _200 1.32 _3000 1.08
 _300 1.31 kernel13 _1000 1.04
 _400 1.45 _2000 1.06
 _500 1.56 _3000 1.09
 _1000 1.51 kernel22 _1000 1.14
kernel3 _1000 1.09 _2000 1.14
 _2000 1.12 _3000 1.16
 _3000 1.10 kernel24 _1000 1.21
kernel5 _1000 1.11 _2000 1.17
 _2000 1.14 _3000 1.20
 _3000 1.13

Fig.4. Experimental results for one randomly generated submission sequence. The x-axis lists
the benchmark kernels and the y-axis is the speedups achieved (with baseline speedup=1).

The experiments were carried out on an AMD platform which has a 1GHz AMD

Athlon(tm) 64 X2 Dual Core Processor 3600+ and 1G RAM, with gcc x86_64-linux-
gnu 4.3 (with –O3 compile flag) running under Ubuntu Linux 4.3.2-1ubuntu12.

4.3 Results and Analysis

Some experimental results are presented in Fig.4, which shows the performance
improvements found for each benchmark program in one randomly generated
submission sequence SubSeq. These programs and their positions in the sequence are
given in the x-axis, with the corresponding speedups achieved indicated in the y-axis.
For instance, “1) kernel3_3000” stands for kernel3_3000 at the 1st position of this
SubSeq.

For the programs at the start of SubSeq (i.e. kernel3_3000, kernel8_2000,
latnrm_32_64, mult_200, kernel5_3000, fir_32_1 and iir_4_64), the compiler
considered them outliers and applied the random search algorithm within the
predefined transformation space and found most of the performance improvements
within 30 attempts, 90% on average.

For program kernel5_2000 at the 8th position of SubSeq, the compiler found it very
similar to kernel5_3000 encountered before (only differ in feature Size of the outmost
loop). Therefore the compiler applied the best transformation learned from
kernel5_3000 and obtained average speedups of 1.10, 1.05, 1.09, 1.08, 1.10 in its five
attempts. The average speedup achieved is 1.08, compared to that of 1.14 obtained via
search. Similar results can be found for many of the following kernels in SubSeq, for
instance kernel12_3000 in the 9th position, kernel9_3000 and _2000 at the 22nd and 27th
of SubSeq, etc. For kernel12_3000 at the 9th position of SubSeq, the compiler judged
that it is similar to kernel3_3000 at the 1st position, Therefore, it applied the
experiences learned from the latter to kernel12_3000, and achieved speedups of 1.04,
1.05, 1.05, 1.06 and 1.05 respectively, i.e. an average speedup of 1.05 over five
attempts, compared to the max speedup of 1.07 achieved via random search.

It is worth noting that in the 12th position of SubSeq, kernel12_2000 was optimized
by the compiler with the experience learned from kernel12_3000 which, in turn, has
been previously optimized with the experience learned from kernel3_3000, as
discussed above. Such an indirect experience results in a relatively modest speedup
achieved in 1.024 on average. In contrast, the random search algorithm achieved 1.05
on average after 60 attempts. However, in another submission sequence where
kernel12_3000 is positioned before kernel12_2000, the compiler used random search
for the former and achieved a higher speedup of 1.06 (1.07 the highest). This direct
experience was then applied to kernel12_2000, and the resulting speedup was 1.04.
This suggests that direct experiences are more valuable than those learned indirectly
from a less similar program. Therefore, it is suggested that the compiler shall pursue
for direct, first-hand optimization experience when time and resources permitted.

Kernel7_3000 at the 26th position of SubSeq is very similar to many of the
programs (for instance kernel5_3000 and kernel5_3000) the compiler have
encountered before. It was therefore optimized by experiences learned from the others.

Table.4. Performance of our proposed approach on the 15 benchmark programs across
different data sizes and 100 submission sequences. The percentages given here are obtained by
first calculating the ratio of the speedups achieved against the highest speedups for all different
data sizes, before averaging them for each benchmark.

Kernel Positions in the submission sequences
1-10 11-20 21-30 31-43

fft 89% 80% 82% 84%
fir 87% 82% 85% 86%
iir 90% 82% 84% 87%
latnrm 91% 84% 87% 90%
lmsfir 93% 86% 86% 86%
mult 94% 88% 90% 93%
kernel3 92% 85% 88% 91%
kernel5 92% 82% 84% 88%
kernel7 88% 74% 75% 80%
kernel8 90% 78% 84% 90%
kernel9 88% 80% 82% 85%
kernel12 79% 75% 80% 83%
kernel13 85% 70% 76% 85%
kernel22 89% 84% 85% 88%
kernel24 94% 84% 88% 92%
Average 89% 81% 84% 87%

However, due to the function call of exp in kernel7, these experiences achieved
relatively modest speedups in 1.03 on average, i.e. 60% of the max speedup of 1.05.

Given this submission sequence SubSeq of these 43 benchmark kernels, we
achieved 90% of the max speedups or higher for 12 of them (kernel8_2000,
latnrm_32_64, mult_200, kernel5_3000, fir_32_1, kernel_9_3000, lmsfir_8_1,
fir_256_64, mult_100, kernel8_1000, mult_500 and lmsfir_32_64). For the majority of
these 12 kernels, the performance improvements come from random search when the
compiler considered them as outliers, particularly at the starting stage of the compiler,
as discussed above. It achieved 80% of the max speedups or higher for 18 others
(kernel3_3000, iir_4_64, mult_1000, fft_256, kernel13_2000, mult_300, kernel9_1000,
kernel24_3000, iir_1_1, kernel12_1000, latnrm_8_1, kernel9_2000, kernel3_2000,
kernel13_3000, kernel8_3000, mult_400, kernel5_1000 and kernel24_1000). For the
rest, we achieved 70% of the max speedups or higher for six (kernel12_3000, fft_1024,
fir_256_64, kernel_24_2000, kernel22_2000, and kernel22_3000), and less than 70%
for the remaining seven. On average, 80% of the highest performance improvement
across all 43 benchmark kernels via this SubSeq. Similar results can be obtained via
other submission sequences.

Table.4 summarizes the average performance of our proposed approach on the 15
benchmark programs over the 100 submission sequences we have tested in our
experiments. For instance, kernel12_1000, kernel12_2000 and kernel12_3000
achieved only 79% of their respective highest speedups when they appeared between
1st and 10th positions within these 100 submission sequences. This is because only
modest speedups of 1.07, 1.05 and 1.08 can be achieved for them within the given
optimization space, and therefore the noise disturbance appears more significant than
in other cases, which lead to the relatively modest efficiency.

It is worth noting that the majority of these 43 benchmark programs achieved on
average 89% of their performance improvements when appeared at the 1st quarter
(from 1st to 10th) of these 100 sequences randomly generated. This is mainly because
the compiler had little experience when first launched. It considered these programs as
outliers, and made a random search to optimize them. Therefore, most of the speedups
achievable were obtained after 30 iterations. However, when these programs appeared
in the 2nd quarter (11th to 20th) of the submission sequences, the compiler had already
gained some experiences from optimizing other programs. However, such experiences
were not sufficient to provide good enough hints for them (as detailed analysis of the
raw results demonstrate), which results in only 81% of the max speedups on average.

With more programs optimized in the 1st and 2nd quarters of the submission
sequences, the compiler became better equipped with more useful experiences learned
from them, and therefore is capable of making better decisions for programs
encountered in the following quarters. This results in higher performance achieved for
these programs when they appeared in the 3rd and 4th quarters of these 100 sequences,
as shown in Table.4. On average, we achieved 89%, 81%, 84% and 87% for these 43
benchmarks programs when they are positioned in different quarters of the 100
submission sequences. This demonstrates the effectiveness of the RKNN-based outlier
detection approach and the corresponding optimization approach we proposed.

5 Related Work

Various approaches have been developed to explore an optimization spaces
composed of various transformations. Early work by Kisuki et.al [6] uses random and
grid-based search to explore a small optimization space composed of arbitrary
combinations of parameterized loop transformations. Almagor et.al [2] randomly select
transformations before applying them to the given programs in a global manner.
Runtime feedbacks are then used to build a probabilistic model to guide transformation
selection. No mechanism is provided either to avoid interferences between different
transformations or to keep and accumulate optimization experience. Trianatafyllis et.al
[17] use developers’ experience to eliminate from an optimization space subspaces less
likely to provide performance improvement. Kulkarni et.al [8] use genetic algorithm to
search for more efficient transformation sequences based on specified fitness criteria.
Franke et.al [5] develop two different probabilistic approaches, which compete against
each other during the exploration of a space composed on 81 transformations, before
the best sequence is identified at the end. This balances the tradeoff between search
efficiency and coverage.

Most works on learning based compilation focus on how to accelerate the iterative
optimization process, i.e. to reduce the number of “transform, compile and execute”
iterations needed. Agakov et.al [1] uses predictive modeling to help a compiler to focus
its optimization efforts on promising subspace of a given optimization space. Dubach
et.al [4] predict the effect of different transformations on a given program via a
performance model, which correlates code features and performance of a small number
of its variants. Our proposed approach shares a common goal in elimination of explicit
training, but differs in trying to decide whether prior experience can be applied to a

given new program, whilst their approach tries to build performance model for each
given program.

Learning has also been successfully applied to parallelizing compilers. For instance,
Long et.al [11] develops a cost-aware workload allocation mechanism for Java multi-
threading. Wang et.al [18] proposes two predictors to decide the number of threads to
use and the best scheduling policy for a given multi-core platform. Tournavitis et.al [16]
uses machine learning techniques to make better mapping decision and provide more
scope for adaptation to different target architectures. Chen et.al [3] proposed an
adaptive OpenMP-based mechanism, which can generate a reasonable number of
representative multi-threaded versions for a given loop on a given multi-core
architecture. It then uses KNN algorithm to select at runtime a suitable version to
execute based on runtime profile collected. A similar multi-versioning framework can
also be found in [13].

Program/code features play a vital role in learning-based optimization. Leather et.al
[9] present a mechanism to automatically identify features which most improve the
quality of machine learning heuristics used in optimizing compilers.

6 Conclusion

We propose in this paper the idea of using reverse K-nearest neighbors approach to
address the pitfalls of current learning-based optimization approaches, particularly its
reliance on training examples. This results in a sustainable optimizing compiler which,
when given arbitrary programs, can decide whether to explore from scratch a
predefined optimization space, or to directly apply its experience learned before.

Tests of this approach with larger benchmark suites are currently underway. We
also plan to introduce a larger optimization space with more transformations in order to
see more significant achievement of our approach. Empirical Study of experimental
results may help to evaluate the influence of the value of K on the “go search or apply
experience” decision as well as its impact on final results. Further improvement can
also be made in areas such as distance calculation and pruning outdated and less-useful
experience, etc.

References

1. F.Agakov, E.Bonilla, J.Cavazos, et.al. Using machine learning to focus iterative
optimization. Proc. of the 2006 International Symposium on Code Generation and
Optimization (CGO’06), 2006

2. L.Almagor, K.Cooper, A.Grosul et.al. Finding effective compliation sequences. Proc. of
ACM SIGPLAN 2003 Conference on Languages, Compilers and Tools for Embedded
Systems. 2004.

3. X.Chen and S.Long. Multi-versioning for OpenMP parallelization via machine learning,
The 2009 IEEE International Workshop on Multi‐Core Software Systems (in conjunction
with The 15th International Conference on Parallel and Distributed Systems), 2009.

4. C.Dubach, J.Cavazos, B.Franke et.al. Fast compiler optimization evaluation using code
feature based performance prediction. Proc. of the 4th International Conference on
Computing Frontiers (CF’07), 2007.

5. B.Franke, M.O’Boyle, J.Thomson, et.al. Probablistic source-level optimization of embedded
programs. Proc. of the ACM SIGPLAN 2005 Conference on Languages, Compilers and
Tools for Embedded Systems, 2005.

6. T.Kisuki, P.Knijnenburg and M.O’Boyle. Combined selection of tile sizes and unroll
factors using iterative compilation. Proc. of the 2000 International Conference on
Languages and Compilers for Parallel Computing. 2000.

7. F.Korn and S.Muthukrishnan, Influence sets based on reverse nearest neighbor queries,
Proc. of the 2000 ACM SIGMOD international conference on Management of data, 2000.

8. P.Kulkarni., W.Zhao, H.Moon, et al. Finding Effective Optimization Phase Sequence[A].
Proc. of ACM SIGPLAN 2003 Conference on Languages, Compilers and Tools for
Embedded Systems, US:2003.

9. H.Leather, E.Bonilla and M.O’Boyle. Automatic feature generation for machine learning
based optimizing compilation. Proc. of the 2009 International Symposiom on Code
Generation and Optimization (CGO2009), 2009.

10. C.Lee. UTDSP benchmark suite. http://www.eecg.toronto.edu/~corinna/
DSP/infrastructure/UTDSP.html, 1998.

11. S.Long, G.Fursin, B.Franke. A cost-aware parallel working allocation approach based on
machine learning techniques, Proc. of IFIP International Conference on Network and
Parallel Computing, 2007.

12. R.Longbottom. BenchNT Classic Numeric benchmark suite.
http://www.roylongbottom.org.uk/, 2010.

13. L.Luo, Y.Chen, C.Wu, S.Long, et.al. Finding representative sets of optimizations for
adaptive multiversioning applications, Proc. of the 3rd Workshop on Statistical and
Machine learning approaches to Architecture and compilaTion (SMART'09), 2009

14. T.Mitchell. Machine learning. US: McGraw-Hill Press, 1997.
15. J.Thomson, M.O’Boyle, G.Fursin et.al. Reducing Training Time and Calculating

Confidence in a Machine Learning-based Compiler. Proc. of 22nd International Workshop
on Languages and Compilers for Parallel Computers (LCPC’09), 2009.

16. G.Tournavitis, Z.Wang, B.Franke, et.al. Towards a holistic approach to auto-parallelization,
integrating profile-driven prallelism detection and machine learning based mapping. Proc.
of ACM SIGPLAN 2009 Conference on Programming Language Design and
Implementation (PLDI 2009), 2009.

17. S.Trianatafyllis, M.Vachharajani, N.Vachharajani, et.al. Compiler optimization space
exploration. Proc. of the ACM/IEEE 2003 International Symposium on Code Generation
and Optimization, 2003.

18. Z.Wang and M.O’Boyle. Mapping parallelism to multi-cores: a machine learning based
approach. Proc. of 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2009.

