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Abstract. The notion of data locality has been implicitely considered in high performabmputing and code
optimisation since many decades. The litterature presents multiple formah@es on static code analysis and
optimisation forregular codes, whilerregular codes are left for heuristics. Till now, the notionrefularity was

not precisely defined, every approach of code analysis and optinmsaty have its own point of view on it.
This article presents a novel point of view on data regularity analysis g#imgl processing methods, allowing to
analyse a larger fraction of programs that were considered irregjuteow. We restrict our study on analysing the
streams of accessed memory addresses during program exebutidhhe approach is general enough to be used
for analysing other types of data streams in programs.

1 Introduction

Analysing the accessed memory addresses during progracutexe helps to improve and analyse the program per-
formance. Different kinds of data can be collected duringgpam execution: branch addresses, memory addresses,
instructions addresses, data inside a memory location)retbis article, we consider the stream of data which is
the accessed memory addresses during program executierchBinacterisation of the accessed memory addresses
is a well studied topic in the litterature that can be perfednat compile time or at the run-time. At compile time, a
static analysis of the source code can be performed to ihkeatcessed memory addresses. Indeed, the static code
analysis at source level is until now limited to regular dataess without any indirection (codes fitting in the poly-
hedral model). For the case of irregular memory accessc stade analysis is most of the time ineffective. For this
reason, dynamic on-line (during execution) or off-linetéafexecution) analysis can be a promising route. There are
numerous mathematical tools used to precisely charagtarid analyse data (accessed memory addresses), such as
polynomial interpolation, different forms of regressidtisear, logarithmic ...). However, all these tools areused

on arestricted kind of programs. For instance, the linegnession fits with the collected addresses where the program
issues a linear access to an array. A better tool is the poliaianterpolation which produces a function that resumes
all the accessed memory addresses. However, the polynioteigdolation can potentially generate a set of polynomial
coefficients equal to the highest term’s degree. In othedsadhe number of polynomial coefficients which resumes
the accessed memory addresses may be as large as the seeataistream.

Regression models are also good candidates to performsactegemory addresses analysis. In fact, a linear regres-
siony = a x x 4+ b, for instance, can resume a large amount of data by few paeasrich as: length of these data, the
coefficients (@ andb) of the affine function and the expected error. In additi@gression models give a pretty good
performance on regular memory accessed addresses, araigb@around the main stream can be controlled. However,
the linear regression is limited to accessed memory adesegkich follows an affine function. In many other cases,
the linear regression cannot be performed. This articlpgses a new method which detects periodic regularities even
in anirregular accessed memory addresses. In order to achieve the paggdiarity detection, three objectives arise:

1. Patterns detection: by resuming the input accessed ssidr¢o a small number of parameters which contain the
most significant part of the input.

2. Filtering noise: by looking for all the accessed memorgiradses situated around a main stream but cannot be
included in it. In other words, the noise is all the data whiahnot be resumed by a regular pattern.

3. Compact the input memory stream: by detecting a reguldenpa that involves a reduction of a large input by its
pattern and hence reducing its size.



The aim of this study is to characterise tbest memory stream. We focus only on a irregular accessed memory
addresses and then perform a best effort analysis to adhiewiteria defined above. The results of this analysis can
be used for multiple usages:

1. Accessed memory addresses analysis and predictionffaase prefetching: If a pattern is clearly identified then
we can easily use it to prefetch program’s data from memocathe.

2. Analysis the accessed memory addresses regularity: fivie dlee notion of accessed memory addresses regularity
in the next section. Generally, the regularity is assodiatith linearity.

3. Value prediction: if the accessed memory addressessasadentifies precisely a pattern then its may be use for
prediction.

In addition, the data analysis can be issued on-line oriné-and needs only a single pass. In order to study the
efficiency of accessed memory addresses analysis, we gesexeral memory streams of linear algebra benchmarks
focused on sparse matrix then we perform experiments on.thbis article is organised as follows. Section 2 gives
a precise definition of the notion of regularity, and givesl tim quantify this notion. Section 3 reminds the spectral
analysis and its properties. Section 4 defines who and wmguke spectral transform to perform the data analysis.
Section 5 describes how the spectral analysis is used inatbe af memory stream. Section 6 shows the obtained
results using our the spectral analysis. And finally Sed@iaoncludes our work.

2 Background: Regularity versus Irregularity

In code optimisation field, the notion of data regularity $saciated to linearity. If a linear increase or decreashef t
accessed memory addresses is observed then the behatietadd instruction is considered as regular. Furthermore,
we find several definitions of the notion of regularity, deglieg on the research domain where it is applied.

2.1 Regularity in Information Theory

In information theory, the data regularity (data in broadsss is described as the data entropy by Shan®joof Bell
Labs. It is based on data occurrences analysis. The datgpgrigrdefined by the following formula:

H(X) = *ZP(%‘) x loga P(x;)

where: the different;; are the sequence of the analysed data. In our field, the aphals the memory stream
addresses anf(x;) is the occurrence probability of the symhgl In the information theory, the regularity approach
is based on data redundancy, and it is usually used on thealditag, compression and transmission.

2.2 Regularity of Random Number Generator

In the field of statistic and probability, we need to geneditierent random numbers. In fact, an irregular sequence
of numbers is defined and may satisfy a specified set of stafisests ][ ?].
The notion of regularity is defined through the notion ofguarity since the term irregular is the opposite of regular
By the way, statistical tests of random numbers generamuged to quantify the irregularity (and symmetrically
the regularity). These tests quantify the degree of rand@sion the analysed data sequence. In addition, from the
different results we can symmetrically deduce the regyiaf the sequence. In fact, the first test used for checking
random number generation is the chi-squ@yé) test. It can be issued for any kind of distribution. It is penfied
using the following formula:
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Wherek is the number of generated random dataando; are the expected and observed frequencies of‘the
data. The calculated follows a chi-square distribution with — 1 degree of freedom. Using the chi-square table, the
data can be classified as random or not.

A second statistical test which allows to assert if a sega@icmumbers is random or not is the Kolmogorov-
Smirnov test. This test defines two bounds

K* = /n x max(F,(z) — F.(z))wherer € R

and
K~ = /n x max(F,.(r) — F,(r))wherer € R

Where:F, (x) is the expected cumulative distribution of the variablEndF,(x) is the observed one.is the num-
ber of the observed variables. Th&™ measures the maximum deviation when the observed cunrildistribution
function is above the expected one. While, fie measures the maximum deviation when the observed cunailativ
distribution function is bellow the expected one. The cotagwalue ofK ~ and K~ are used with the Kolmogorov-
Smirnov table and permit to identify thedegree of randomness.

There are other statistical tests which permit to assetigfgenerated sequence of data is random or not. As
observed, they quantify the degree of randomness of datparau to the expected one.

2.3 Granularity Effects in Regularity

In cache memory optimisation, an important criterion oflgsia is the granularity of view (as camera zoom in/out
in a picture). The regularity is a parameter which dependthergranularity. In accessed memory address analysis,
the granularity is the manner to consider data, i.e the gaimt) itself or a set of data. In the case of a set of data,
the size of this set determines the level of granularity. Wesaer three levels of granularity of the accessed memory
addresses:

1. The finest granularity is the address itself. For this ll®fegranularity, we try to detect the regularity of the
accessed memory addresses. In addition, we try to modetrirems of memory addresses with a mathematical
function or a statistical model if possible.

2. A cache-line granularity is the second level of grantyadt this level of granularity, the considered data beceme
a cache-line and clusters all the addresses which are irathe sache-line to just one reference. The size of the
cache-line depends on the target architecture. This casterssting to develop because it indicates which cache-
line to prefetch and the fact of clustering multiple refaremto just one cache-line hide the access order inside
this cache-line. A simple way to get the cache-line grariylamong a sequence of accessed memory addresses
is to mask the low weight bits of the addresses and elimifgtednsecutive duplicated addresses. Obviously, the
collected sequence of the accessed memory addresses exhvéesnemporal series. So hence, the order of this
sequence is important to model.

3. A page or block granularity is the coarser granularitelave can consider. The size of the considered page of
block must be smaller than the size of the cache memory. déte are framed in a narrow window smaller than
the cache then many optimisations are possible. Furtherrtier block must be atomic and cannot be divided into
smaller blocks. As the medium granularity showed before siquence of the accessed memory addresses is a
temporal serie where the order is an important parameter.

As said before, we call noise all the accessed memory addredsich cannot be resume by a regular pattern. The
coarser grain granularity must not includes noise, i.eaegéiche-line or block data outside the boundaries. If noise
exists, the block must be divided into smaller blocks andtiiee must be thought out. Furthermore, depending on the
granularity level found in the sequence of the accessed meadalresses, three kinds of regularities can be detected.

1. Accessed memory addresses by linear sequence: this éasiest kind of data to recognise. The input follows
a linear/affine function. To proceed, all new accessed mgmddresses are checked. The result is a set of lin-
ear/affine functions accompanied which their definitioetnals. This set of linear/affine functions can be recur-
sively clustered to construct an N dimensional polyhedron.



2. Another case of regularity which is possible to explothis fine irregularity in a bounded memory blocks. In this
case, the accessed memory addresses seem fully irregulstilbun a narrow window smaller than the cache.
In opposition, these bounded memory blocks can follow alegquattern. This can resumed by an irregular fine
grain level granularity but a regular coarse grain levehgtarity.

3. If none of these methods is efficient and cannot respedistieel cases, a signal theory method can be applied to
analyse the data. This method is called the spectral asaysi will be discussed in the next section.

3 Definition and Advantages of Spectral Analysis

The spectral analysis is a tool developed for the signalrthednich allows to characterise an input signal by the
frequencies' which compose it. From our point of view, it can be consideasda mathematical transformation,
changing the sequence of the accessed memory addressesregtency domain.Among the advantages of spectral
analysis, we quote:

— Detection of patterns: the spectral analysis permits taligbt the repeating patterns included in the analysed
sequence if they exist.

— Characterisation of frequencies: It determines the geaitylwith which we observe the data, the high frequencies
correspond to the fine granularities, while low frequenc@sespond to the coarser granularities.

— It is a bijective function: the inverse transform exists, igeover exactly the same input signal if applying the
inverse transform.

— Can be used in data compression: it allows to transform that idata to data with more entropy, which facilitates
their compression (image compression example).

The spectral analysis can be issued by two ways:

1. The Discrete Fourier TransforrDfT) approach based on the Fourier Transform theory. It cansist transfor-
mation applied to the accessed memory addresses and psdtadeequency spectrum of these data. It transforms
the original sequence of the memory accessed addressesdortesponding sequence in the frequency domain.
The mathematical definition of DFT is as follotvs

N-1

—2imkn

X = g Tre N
n=0

Where: zq, 21, ..., zy are the sequence of the memory addresses accessed, TheXsetaoé the obtained
frequencies)V is the size of the inpute is the exponential functiork is the iterator on the accessed memory
addresses. In practice, for N-point real input (memory eslsles accessed are real value), it gives N-point complex
output. The spectrum is the modufief complex number produced by the DFT.

Furthermore, several fast Fourier transform librarieslamgnt theDFT with a O(V x logs(N)) complexity.

2. The Discrete Wavelet TransforrdM{T) is similar to the Fourier transform. The Fourier transfatetomposes
the data to a sum of sinus and cosinus functions with diftepeniods. In opposition, the wavelet decomposes
the input of a sum ofmother wavelet signals with different periods. The discrete wavelet transformnsG(N)
algorithm and is known as the fast wavelet transform.

4 Data Analysis Using FFT/DWT

In this section, we describe the format of the input accesseihory addresses, Fourier transformation and Wavelet
transformation, inverse Fourier transform and inversealetdransformation. In addition, we explain how to deahwit
noise and calculate the error rate.

! the cited frequency is different from CPU frequency, here frequemeans the occurrences of repeating patterns
2 The Euler formula link the sinus and cosinus functions to the exponentiediun

% the modulus is calculated bjz| = /22 + y2 wherez = = + yi



4.1 Input Accessed Memory Addresses

The accessed memory addresses are collected followingltbe/iing schema:

We issue a fine profiling focused on the cache misses instgabgfam execution times. This profiling is performed
with the hardware counters. In addition, we identify thetéstt code (in terms of cache misses). Furthermore, in the
second time execution, we collect the accessed memory smidreising PIN for the Intel Core2 micro-architecture
or the ST200run plug-in simulator for the ST231 processbe Targeted accessed addresses of the same load are
clustered together. From this organisation, we obtain aok&tads, and for each one, a set of accessed memory
addresses. In our study, we focus on the most delinquens Ia&d us define the delinquent loads byAn instance

L(i) means that the loadl is executed at th&” time. A(L(i)) is the used address of the instariad the loadL. We
represent the analysis of the accessed memory addresdes $Btf) :

T, = A(L(3))]i = 1,n.

WhereL hasn instances. Once the input accessed memory addresses definadply the Fourier transform to this
input.

4.2 Fourier Transform

The collection of the accessed memory addresses is notsaeitegperiodic {.e. it is not exclusively composed of
periodic patterns), thus the used period is the length ofrthet. The output of the Fourier transform is a vector of
complex numbers. Each magnitude of the complex numbersgorals to a frequency (the Fourier transform makes a
transition from temporal values to frequencial one). LedefineY; the frequency obtained after the Fourier transform
which is defined as:

Y; = FFTn(TL)

where

—2injk

N
FFTN(TL) = {f1, for o fn|fe = Y AL())e ™~}
j=0

The input of the Fourier transforf;, (collection of accessed addresses) is real, the spectruthdifrequency do-
main) is symmetrical. Therefore, fé¥ real input, we analys% complex output. The other spectral analysis can be
performed with the Wavelet transform which we describe nftilowing section.

4.3 Wavelet Transform

We use the Haar wavelet, as the Fourier transform, for aedesemory addresses characterisation and filtering.
Figure 1 shows the mother wavelet of Haar wavelet. The madkieat definition of the Haar mother wavelet is:
1L0<t<g
¥(t) =< —1 4 <t <1 The applied Haar transform function defined by:
0 Otherwise

Dn(A(L())) = (2 x A(L(i)) = k);j e N;0 <k <2

Wherej is the scale of the functiond(L(i)) is the accessed memory address &nd the shift. As the method
described using the Fourier transform, the accessed meadoingsses are decomposed with the Haar transform to a
set of data of coefficients with smaller magnitude. The sgighape of the Haar wavelet is more suitable to the integer
data than continuous ones. This fact makes the Haar transfmre precise and powerful than the Fourier transform.
The noise filtering is the major advantage of the spectralyaisacompared to the classical analysis (connectivity
graph, markov chain. The spectral analysis associatedfiltéfing is described in the following section.
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5 How to Use the Spectral Analysis

The spectral analysis is based on the idea of repeatingpattehe strides deduced in the memory references. We
apply the Fourier transform and the Haar wavelet transfacoming the following idea: decompose the input into a
repeating pattern and separate it from the undesirable nois

5.1 Fourier Transform Application

When applying the DFT, the input is transformed to the fregyaetomain. The analysis performed of the frequency
domain has to handle the following characteristics:

— In the frequency domain, the output of the spectral tramsfehows a different aspect than the input. Figure2
shows the spectral transform of a random sequence reped@diines. We can observe through this figure the
frequency peaks. Indeed, narrow peaks on frequency domaiiels a detected repetitive pattern and thus a large
amount of the same sequence in the accessed memory addresace

— The peak amplitude has a direct relationship with the vabfethe data entries. The peak detection becomes
problematic if the input data is composed of small values paak detection can be perturbed by noise which
can has greater values. In an extreme case, the noise (nadipgrattern) can completely hide periodic input
because of the amplitude values. In order to alleviate tbblpm, a possible solution is to associate weight to the
periodical input values (which requires prior knowledgetef signal).

— For the analysis purpose, the highest peaks of the transboitput are selected. They contain large panel of
frequencies. The higher frequencies correspond to a seoddppattern, for instance the most internal loop within
aloop nest. In opposition, the lower frequencies corregpoia longer period pattern, for instance the outer loops.

The output of the spectral transform is splitted accordmthe peaks.In fact, the peaks represent the periodic patter
that we aim to analyse. The other values are considered asig®which must be filtered. This approach is restrictive
to near periodic pattern. We write Algorithm 1 that shows pleeks detection and noise elimination steps. For the
peaks detection aim, the arriy eq containing the frequencies is sorted. This operation alosto focus only on the
maxpeak frequencies with the higher values. Furthermore, for emehad these frequencies with high values, the left
and right frequencies which are around them are also selete left and right frequencies are selected in condition
to be smaller than the central (with higher frequencieshwain dt hpeak factor. The result is thér eq array with
only the higest peaks. In Figure 3, we show the used schenmatgse the accessed data memory references. At first,
we apply a Fourier transform to the input data (strides secgle Then we make a filter to the obtained output. This
filter consists in keeping thi bigger values of the output. This is equivalent to selecfittguency which contains
the heaviest weight. The third part of this schema is optidhaonsists on applying an inverse Fourier transform to
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Algorithm 1 Filtering Algorithm
Require: freq[N], widthpeak, maxpeak;
Ensure: freg[N];
int T=suharray(sort(freq),maxpeak);
{T is a sorted index of frefg
for (i=0;i < maxpeak; i++)3o
{loop to treat the highest pegks
i=0;
while (freq[T[i]+j] < widthpeakx freq[T[i]] do
{loop to calculate the peak’s width
WIDTHI[i]++;
j++;
end while
{WIDTH contains the width of the higest pegks
end for
Nfreg[]=NewArray(SetToZero());
{Copy only the highest peaks and its neighpor
for (i=0;i i N; i++ do
for (j=-WIDTH][i] ;j < WIDTHI[i];j++) do
Nfreq[]=freq[i+j];
end for
end for
freq[]=Nfreq[];

compare the obtained output with the input and then to chieelquality of the analysis. One important parameter
of the data analysis is the size of the frequency kept. Itns] now, a constant parameter, which is set by the user.
However, it can be dynamically set by the framework.

5.2 Haar Wavelet Transform Application

The Wavelet transform is used in the same manner as the Ftnasform. The used approach is based on the Haar
wavelet transform property: any real data input can be agubred by a linear combination of the Haar scaling function.
The number of those scaling functions determine the reigyfliaregularity of the input. The heart of our idea is to
apply the Haar transform to the sequence of the strides gty the memory references. By the way, the obtained
results are filtered as the same manner applied in the Faapjmoach. The last step is optional for checking the
efficiency of the filter. Let us see the quantification of thésadncluded in the input accessed memory addresses.

5.3 Error Rate

Our analysis method is based on filtering the obtained frecjae or Haar coefficients output array using respectively
the Fourier transform or the Haar wavelet. One major paranaétthe filtering is the loss ratio and the noise filtering.
To measure the error rate, we must re-generate the inputsgisequence after filtering and compare the re-generated
one with the original one. Depending on the set of collectiftesses, the quality of filtering is induced. We need to
care about the quality of the filtering, it is a trade-off beem the loss rate and the filtering quality. The mathematical
definition of the filtering quality is as follows.
The error rate ist/ = %

L
with

pr = {IIA(L(G)) # A'(L(5))}

Wherepy, is the set of value that have a difference between the inméssed memory addressé6L(j)) and the
re-generated outpud’(L(j)). This formula quantifies error rate when filtering the transfed input. It takes into
account the order sequence and the values themselves (s@én the case of cache optimisation, if these values can



be clustered into cache lines). We can quantify the errordyguthe following formula:

Tz
|A(L()) — A'(L(4))]
QE _ =0

[T |

> AL®)
=0

It indicates how much the re-generated trace is differemhfthe original one. It gives an idea of the importance of
the quality filtering.Q E' gives finner information thai.
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6 Experiments Results

Figure 4 shows the accessed memory addresses issued byathe smatrix vector multiplication using thigar t h
sparse matrix available aP][ This sparse matrix is used as a subscript array to accégsrda sparse matrix vector
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multiplication. In addition, we perform tests on this matrihe sequence of memory addresses accessed via this
matrix is irregular. Figure 5 shows the results after apygyour developed method: FFT transform combined filtering
(described in Figure 3. A few repeating pattern are fountableast the filtering operation does not degrade the data.
In addition to theBar t h, we perform experiments over a large set of matrices (143ticea) available at 7). For

the experiments, we consider four values for thexpeak length parameter, 10%, 25%, 50% and 75% of the total
length of the analysed sequence of the accessed addreiggas. 6-shows the boxplot of the error rate applying the
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Fig. 6. FFT Error Rate Varying Maxpeak length from 75%, 50%, 25% to 10% ofXtiginal Sequence length

FFT combined with filtering. Figure 6 uses 75%, 50%, 25% arb 10 the original sequence length agixpeak
values. The X axis is thewaxpeak length (ratio of the original length) and the Y axis is theoemate (percentage).
Figure 6 shows that in the worst casedzpeak is 10% of the sequence length), half of the experimentedesenas
have an error rate less than 10%. In the other casecpeak is 75% of the sequence length), the third quarter of
the experimented sequences have an error rate less tharFR%e 7 shows the boxplot of the error rate applying
the Haar Wavelet combined with filtering. Figure 7 uses 7508p525% and 10% of the original sequence length as
asmaxpeak values. The X axis is thevaxpeak length (ratio of the original length) and the Y axis is theoemate
(percentage). Figure 7 shows that in the worst caserpeak is 10% of the sequence length), half of the experimented
sequences have an error rate less than 5% which is a betiftithes the FFT result. Using 50% of the sequence length
asmaxpeak, the experiments show that half of the error rates are ahdtin@lly, in the last case whereazpeak is
75% of the sequence length, except few error rate valuetheatither error rates are about 0%. Comparing Figure 6
and Figure 7, we can easily claim that the Wavelet resultbetter than the FFT one.

7 Related Work
The characterisation of the irregular data behavior (iregalh and the irregular memory accessed addresses (in par-

ticular) is a well studied topic. In fact, the irregularitgtd can be described by the technique proposed by Shashon [
called the data entropy which is based on data occurrenedygsém The data entropy is usually used for data coding,
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compression and transmission. In the statistical fieldietlaee several tests (Chi-square, Kolmogorov-Smirnoy,. ..
which determine if the generated data sequence is randoot.oFimis definition can be symmetrically used in the case
where the statistical tests fail to affirm if the data seqedacandom or not. In this case, it may contain some regular-
ities. Beyleret al. [?] use the Markov model to characterise the accessed memdrgsaes. Indeed, their first aim is

to characterise the memory behavior by collecting the diffeinformation and then predicting the issued strides gen
erated by the accessed memory addresses. Their major doadésform software prefetch using results obtained by
the first aim. Furthermore, they propose an on-line portabtesoftware solution based on a memory strides Markov
model calledesodyp. Markov model relies on a history of accessed data to préuichext data to be accessed. Beyler
et al. perform experiments using ft, equake, art and mcf benchsnafrlspec2000 and treeadd benchmark upon lta-
nium architecture combining both icc and gcc compilers. Rawmorthy [?] proposes to use the connectivity matrix
and the reachability matrix to store the accessed virtug¢par caches lines. Based upon these matrices, he proposes
to perform the prediction of memory pages or cache-lines.usenote that the Ramamoorthy’s connectivity matrix
has the same signification as in graph theory. In fact, we gtththe connected nodes in this matrix. In addition, this
matrix is used as the predictor of the next accessed pagecbedme. The reachability matrix stores for each node,
all the reacheable possible nodes. This technique is usedriothe pages or cache-lines which must be replaced. The
idea to save past sequences to predict the future missesisistd in the correlation prefetching. At first, this latter
consists on storing several sequences on a table and thgradamthe current accessed sequence with the stored
one. This optimisation has been implemented by Bhael. [?], Rechstschaffert al. [?] and Charneet al. [?]. The

loop trace recognition is performed by Clagssl. in [?]. In fact, they start by performing a memory access profiling
and then construct polytopes which are complex structdnesse structures resume memory behavior, periodicity,
linearly accessed linked memory and repetition.

8 Conclusion

In this article, we show that the data collection and analigsa critical part of the prefetch process. Usually, theter
“regular memory access" is used to define an access streamleddaly an affine function. We think that a repetitive
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pattern can also be considered as regular. We propose admaki® detect repetitive patterns through irregular asces
stream. It is a software solution based on spectral anal&sised the FFT approach and the Wavelet one combined
both with filtering. We think that the Wavelet approach is msuitable, because it has a lower complexity O(N) and it
brings better results in term of error ratio. We perform ekpents in an irregular matrix, and we show the efficiency
of our approach. Our approach can also be used to compaes tnath low loss. The spectral analysis allows also the
distinguish between the high frequencies and the low oheshigh frequencies correspond to a small pattern, the low
frequencies correspond to a bigger pattern. The used bemkhithe sparse matrix vector multiplication, is a good
candidate to perform a non affine prefetch due to the indaeathich is the topic of our current work.
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