

Proceedings of the 4th Workshop on

Statistical and Machine learning approaches
to ARchitecture and compilaTion

(SMART’10)

co-located with HiPEAC’10

Pisa, Italy
January 24th, 2010

http://cTuning.org/workshop-smart10

Table of contents:

• Workshop foreword ……………………………………………………………………………………………… 2

David Whalley (program chair)1, John Cavazos 2, Grigori Fursin 3,
1 Florida State University, USA
2 University of Delaware, USA
3 INRIA, France

• Automatic Selection of Machine Learning Models
for WCET-aware Compiler Heuristic Generation ………………………………………… 3
Paul Lokuciejewski, Marco Stolpe, Katharina Morik,
Peter Marwedel
TU Dortmund University, Germany

• Application Heartbeats: A Generic Interface for Expressing

Performance Goals and Progress in Self-Tuning Systems ………………………… 18
Henry Hoffmann, Jonathan Eastep, Marco Santambrogio,
Jason Miller, Anant Agarwal
MIT, USA

• Automated Timer Generation for Empirical Tuning …………………………………… 33

Josh Magee, Qing Yi, R. Clint Whaley
University of Texas at San Antonio, USA

• Static Java Program Features for Intelligent Squash Prediction …………… 48

Jeremy Singer 1, Paraskevas Yiapanis 1, Adam Pocock 1,
Mikel Lujan 1, Gavin Brown 1, Nikolas Ioannou 2, Marcelo Cintra 2
1 University of Manchester, UK
2 University of Edinburgh, UK

• Smartlocks: Self-Aware Synchronization through Lock

Acquisition Scheduling …………………………………………………………………………………………… 60
Jonathan Eastep, David Wingate,
Marco Santambrogio, Anant Agarwal
MIT, USA

Workshop foreword:

Welcome to the Fourth Workshop on Statistical and Machine
Learning Approaches to ARchitectures and CompilaTion
(SMART'10). The workshop series is intended as a forum for
the growing community that studies the application of
machine learning techniques to translation and the design of
machines. It also has as a goal to increase awareness about the
tremendous importance of advanced techniques to address
the complexity of today's machines and compilers.

This year, we received eight submissions; each was evaluated
by at least four members of the program committee with an
average of 4.6 reviews. Five of the submitted papers were
accepted, based on their quality and focus, for presentation at
the workshop. Besides the papers, the program this year also
includes a keynote presentation by Prof. Keith Cooper on the
PACE project.

We hope that this year's attendees will find the ideas
presented in the papers and the keynote presentation
interesting and useful. Best wishes for a productive meeting!

John Cavazos, Grigori Fursin, David Whalley (program chair)
SMART'10 organizers

Automatic Selection of Machine Learning Models for

Compiler Heuristic Generation ⋆

Paul Lokuciejewski1, Marco Stolpe2, Katharina Morik2, Peter Marwedel1

1 Computer Science 12 (Embedded Systems Group)
2 Computer Science 8 (Artificial Intelligence Group)

TU Dortmund University
D-44221 Dortmund, Germany

FirstName.LastName@tu-dortmund.de

Abstract. Machine learning has shown its capabilities for an automatic gen-
eration of heuristics used by optimizing compilers. The advantages of these
heuristics are that they can be easily adopted to a new environment and in some
cases outperform hand-crafted compiler optimizations. However, this approach
shifts the effort from manual heuristic tuning to the model selection problem
of machine learning – i. e., selecting learning algorithms and their respective
parameters – which is a tedious task in its own right.
In this paper, we tackle the model selection problem in a systematic way. As
our experiments show, the right choice of a learning algorithm and its parame-
ters can significantly affect the quality of the generated heuristics. We present
a generic framework integrating machine learning into a compiler to enable an
automatic search for the best learning algorithm. To find good settings for the
learner parameters within the large search space, optimizations based on evolu-
tionary algorithms are applied. In contrast to the majority of other approaches
aiming at a reduction of the average-case execution time (ACET), our goal is
the minimization of the worst-case execution time (WCET) which is a key pa-
rameter for embedded systems acting as real-time systems. A careful case study
on the heuristic generation for the well-known optimization loop invariant code

motion shows the challenges and benefits of our methods.

1 Introduction

Optimizing compilers transform a program written in a source language into a seman-
tically equivalent program in a target language. The generated code should exhibit a
high performance. Since finding optimal solutions to compiler optimizations is provably
hard, compiler writers are forced to use heuristics as approximate solutions. The devel-
opment of heuristics for compiler optimizations is a tedious task requiring both a high
amount of expertise and an extensive trial-and-error tuning. The reasons are twofold.
First, heuristics often use simplified architecture models of complex systems, which do
not sufficiently capture all relevant architectural features. Second, compiler optimiza-
tions are typically executed within a sequence of interfering optimizations. Since the
mutual interactions are hardly predictable, compiler writers develop heuristics based
on conservative assumptions. Such heuristics avoid negative effects but also prevent
the exploration of the optimization potential.

⋆ The research leading to these results has received funding from the European Commu-
nity’s Artist Design Network of Excellence and from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement no 216008.

- 3 -

Machine learning (ML) techniques have recently raised considerable research in-
terest in the compiler community since they can help to automatically find good op-
timization heuristics. Given a set of characteristics (called static features) about the
code to be optimized, machine learning tools automatically learn a mapping from these
features to heuristic parameters. For today’s rapidly evolving processor market, these
machine learning based (MLB) heuristics offer two advantages. First, they often out-
perform hand-crafted heuristics [21]. Second, they can be automatically adopted to
new environments.

A central questions in the heuristic generation is that of model selection which cov-
ers the choice of the learning algorithm, its parameters, and the features. Over the
last decades, a vast spectrum of different machine learning algorithms was developed.
The learner selection for the generation of high-performance heuristics is not trivial
and becomes even more complicated since most learners are equipped with numer-
ous parameters considerably affecting the learner’s behavior. The consequence is that
typically one or two learners are applied using standard parameter settings [18, 15, 6].
However, this approach does not exploit the full learners’ potential and possibly misses
optimization opportunities.

In this paper, we systematically explore the performance of different learners and
their parameters for compiler heuristic generation. We use the open-source machine
learning tool RapidMiner [17]. It includes not only a large number of learning algo-
rithms, evaluation procedures, and feature transformation operators, but also operators
for self-optimization regarding, e. g., parameter settings of learning algorithms. Since
the true quality of learners depends on the quality of their predictions [12], the consid-
ered learners are directly involved in the model selection run on real-life benchmarks.
Using this approach allows to find the best learner with the highest performance in-
crease for a particular optimization.

While machine learning was studied in the past in the context of ACET mini-
mization, this work focuses on embedded systems acting as hard real-time systems.
Besides efficiency requirements, these systems are characterized by their critical tim-
ing constraints which are expressed by the worst-case execution time. Especially for
safety-critical application domains, such as automotive and avionics, the satisfaction
of the WCET must be guaranteed to avoid system failure. Thus, we concentrate on an
automatic generation of MLB heuristics that promise the highest WCET improvement.
The main contributions of this paper are as follows:

1. For the first time, we address the well-known problem of selecting an appropriate
learning algorithm for the generation of optimization heuristics [20] in a systematic
way.

2. We evaluate six popular learning algorithms. The study indicates that different
learners and their parameter settings significantly affect the program performance.

3. Since the search space for the learners is typically too large for an extensive search,
we apply a parameter optimization based on evolutionary algorithms.

4. To demonstrate the efficiency of our approach, MLB heuristics for the well-known
optimization loop invariant code motion are generated. In contrast to previous
works, our work aims at a WCET minimization.

5. Due to the integration of a machine learning tool into the novel WCET-aware
compiler framework, the exploitation of a vast range of learning techniques is es-
tablished. Also, the framework can be easily adopted to generate heuristics for
other compiler optimizations.

- 4 -

6. The presented concepts can be easily adapted to ACET optimizations. Therefore,
our work can be seen as a general contribution to compiler research independent
of the considered objective.

The rest of this paper is organized as follows: Section 2 gives a survey of the related
work. In Section 3, an overview of the current state of machine learning employed within
a compiler is provided and problems arising from the selection of learners are discussed.
To overcome these problems, we propose a new methodology for an automatic selection
of parametric learners in Section 4. The optimization loop invariant code motion is
introduced in Section 5. A description of our experimental environment and results
achieved on real-world benchmarks are given in Sections 6 and 7, respectively. Finally,
Section 8 summarizes this paper and gives directions for future work.

2 Related Work

ACET Minimization by Machine Learning: The application of machine learning
techniques in compiler design was mainly studied in the context of the ACET min-
imization. Vaswani [23] uses empirical regression models to characterize interactions
between optimizations in the GCC compiler. The search for good compiler optimiza-
tion sequences, also called iterative compilation, has been thoroughly studied in the
past. Kulkarni [11] uses genetic algorithms to avoid an exhaustive search. In [3], a
characterization of the search space is used to find good compilation sequences more
efficiently. Leather [13] applies fixed sampling plans while Cavazos [5] exploits perfor-
mance counters to accelerate the search. In contrast, Agakov [2] reduces the number of
evaluations using machine learning approaches by focusing on promising areas of the
search space.

MLB Heuristic Selection for ACET Minimization: A vast application field
of machine learning in compilers is the automatic generation of optimization heuristics,
known in literature as heuristic selection. Monsifrot [18] used a supervised classification
to generate heuristics for loop unrolling which decide whether unrolling should be
performed. This approach was extended by Stephenson [15] to find MLB heuristics that
predict the best unrolling factor for a given loop. Machine learning techniques (e. g.,
reinforcement learning) were also studied in the context of instruction scheduling [6].
In [12], a grammar-based mechanism using genetic programming is presented that
automatically extracts features for machine learned heuristics.

WCET Reduction: Typically, compiler optimizations aim at an automatic re-
duction of the ACET. With the growing importance of embedded systems acting as
real-time systems, the worst-case execution time must be considered as a crucial ob-
jective. WCET-aware compilation is a novel research area with an increasing academic
and industrial interest. Approaches in this domain rely on feedback data, the WCET,
which is provided by a static analyzer. A sophisticated WCET analyzer, also used in
this work, is aiT [1]. Most approaches to WCET minimization operate on assembly
level and exploit memory hierarchies. For example, the authors of [4] presented an al-
gorithm for static locking of I-caches based on a genetic algorithm while compile-time
cache analysis combined with static data cache locking was presented in [24]. Other
approaches exploit fast scratchpad memories (SPM) for WCET minimization. Greedy
algorithms for a WCET-aware SPM allocation of data are presented in [7], while opti-
mal approaches based on an ILP formulation are explored for data and program code
in [22] and [8], respectively.

- 5 -

Decision
Trees

Naive
Bayes

kNN
SVM

Random
Forests

...

feat1 feat2 ... label

Learner:

Par1 = c1
Par2 = c2
...
ParN = cN

Representation of
Program in Compiler

Feature Extraction Machine Learning
Algorithm Selection

Supervised Learner
Model Induction

Learner Prediction
Model /

Heuristic

Fig. 1. Overview of Machine Learning Based Compiler Heuristic Generation

WCET Minimization by Machine Learning: The potential of machine learn-
ing for WCET minimization is sparsely explored within today’s literature with only a
few publications. Zhao [26] used a genetic algorithm for the search of standard low-
level optimization sequences that aim at an effective reduction of the program WCET.
In [14], supervised learning was used to infer heuristics for function inlining. The latter
paper is most related to our current work since the objective of finding MLB heuristics
for WCET reduction is pursued. However, there are also several significant differences.
Most importantly, in [14] just a single supervised learner with its standard parameters
was considered. Moreover, contrary to our compiler framework providing a seamless
integration of a machine learning tool, the related paper used a compiler that was com-
pletely decoupled from the ML tool. Thus, the generated inlining heuristics had to be
integrated into the compiler by hand. In addition, the optimizations are performed at
different abstraction levels of the code. Function inlining was considered at the source
code level whereas we consider loop invariant code motion as an optimization performed
at assembly level.

3 Machine Learning in Compilers

In this section, an overview of supervised machine learning techniques in the compiler
design is provided. Section 3.1 summarizes the common approach of incorporating ma-
chine learning techniques into a compiler and describes the workflow required to auto-
matically generate a heuristic. A shortcoming of this workflow is the model selection
problem which will be discussed in Section 3.2.

3.1 Current Workflow for Heuristic Generation

The heuristic generation begins with the obvious decision for which compiler optimiza-
tion an improved heuristic should be generated. An overview of incorporating machine
learning techniques into a compiler framework is depicted in Figure 1. For a repre-
sentation of the program by internal compiler data structures, such as high- or
low-level intermediate representations or abstract syntax trees, the developer has to
decide which features best characterize the parts of the program to be optimized. The
features must be transformed into a proper vector representation serving as input for
the ML tool. This process is called feature extraction. In addition, for each feature
vector a label representing the desired output, e. g., YES/NO, has to be determined.
This phase transforms a set of benchmarks to become the training set. Next, a selec-
tion of a learning algorithm and its parameters is required. The machine learning
community has developed a large portfolio of different learners over the last decades.
Moreover, many learners have several user-defined parameters, leading to models with
different performance. Due to the large number of possible combinations, the selection

- 6 -

of the appropriate learning algorithm is not straightforward. Finally, the chosen classi-
fier (learner) induces a prediction model representing a heuristic which can be used
to predict if/how the considered optimization should be performed for unseen data.

3.2 Problem Specification: Model Selection

A key aspect of the framework shown in Figure 1 is the problem of selecting a learning
algorithm and parameters such that the induced model performs best in terms of the
considered objective, e. g., the WCET. Due to the complex structure of learning algo-
rithms and the non-trivial impact of their parameters, the performance of the induced
model cannot be predicted statically with sufficient precision. Rather, a heuristic must
be generated and its performance must be evaluated on a set of benchmarks [12].

As a consequence, the current state for the MLB heuristic generation can be seen
as a trial-and-error approach. The compiler writer chooses a learner, induces a pre-
diction model and evaluates the impact of the generated heuristic on benchmarks. If
the heuristic did not yield the expected performance results, the compiler writer either
tunes the learner parameters or even selects another learner and repeats the evaluation
hoping for better results. Obviously, repeatedly evaluating different learners manually
is time-consuming, error-prone, and it is often not clear if further tuning pays off. In
literature [18, 15, 6, 12], typically one or two learners are employed without a detailed
reasoning why exactly these algorithms including their parameters were chosen.

The exploitation of machine learning for heuristic generation is attractive since it
relieves the compiler writer from the tedious task of developing heuristics manually and
it also enables an easy and efficient adoption to changes in the compiler framework or
the underlying system. However, the effort is now shifted from the manual tuning of
heuristics to the model selection problem of learning. Here, we propose a new framework
which systematically evaluates models induced by different learners and parameter
settings through integration of a compiler and an ML tool.

4 Automatic Model Selection

In this section, we describe our methodology for an automatic selection of the best
model. In Section 4.1, we summarize the key characteristics of the machine learning
algorithms that we consider for comparison. In Section 4.2, performance evaluation of
supervised learners is discussed. As will be described in Section 4.3, this evaluation can
be exploited for evolutionary parameter optimization and the final model selection. For
a detailed discussion of the learning methods, see standard literature [10].

4.1 Learning Algorithms

In this paper, we consider popular learning algorithms which have been successfully
applied in the past for various applications and that rely on different principles.

Decision Trees partition the examples into axes-parallel rectangles by recursively
splitting the training set into sub-trees. Frequently, information gain, based on the
entropy (impurity) of a node, is used as splitting criterion. Additionly, there might
be stopping criteria like the maximal depth of a tree and thresholds for the minimal
number of examples in a node to split it further (minimal size for split), the minimal
number of examples in a leaf (minimal leaf size), the minimal information gain for

- 7 -

splitting (minimal gain), and the number of alternative nodes considered (prepruning
alternatives). Furthermore, a confidence level for post tree pruning can be specified.

Random Forests consist of several unpruned decision trees which are constructed
from different bootstrap samples. The algorithm uses a randomly chosen subset of
features to find the best split for each node and it is robust against overfitting. Like
decision trees, random forests can still classify new examples very fast by majority
voting over the predictions made by each tree in the forest. Only two parameters have
to be optimized: the number of trees in the forest and the number of considered features
for node splitting.

Linear Support Vector Machines (SVM) find a hyperplane which separates
the examples such that those with the label y = +1 are in the positive half and those
with the label y = −1 are in the negative half of the instance space. The hyperplane
is determined by β · x + β0. The learning task is to estimate β and β0, such that the
error is minimal (i. e., the instances are placed on the correct side of the hyperplane)
and that the learned model is of minimal complexity (i. e., the distance between the
closest instance to the hyperplane is maximal). Those examples which are closest to the
hyperplane are called support vectors. In order to allow some misclassified instances,
the soft margin SVM offers a parameter C which gives a weight to the error as opposed
to the complexity. Internal optimization compares all examples pairwise using a kernel
function. For the linear SVM, the kernel function is the dot product xi · xj .

SVMs with RBF kernel operates on not linearly separable data by including
another kernel function into the SVM. The radial basis function (RBF) covers areas
of instances by a Gaussian distribution: KRBF (xi, xj) = exp(γ(xi, xj)

2). Hence, the
parameter of the Gaussian’s width, γ, is decisive: for a low γ, almost every example is
covered by its own RBF region, for a large γ, interesting regions cover a set of examples.

k-Nearest Neighbor (kNN) stores all examples and classifies a new input by
looking at k most similar examples. The majority class of these k examples becomes
the predicted class. If k is too small, the error is reduced, but the prediction becomes
biased, e. g., by outliers. If k is too large, the error might also become large. Thus, the
setting of the appropriate k is crucial for the learner’s performance.

Naive Bayes predicts for an example x the class y such that the likelihood
P (y|x) is maximal. According to Bayes’ theorem, it suffices to maximize the probability
P (X |yi)P (yi), since the a priori probability of the labels in Y (e. g., P (yi = Y ES) or
P (yi = NO)) are the same for all training examples. Implicitly, Naive Bayes assumes
the independence of all example’s features. Due to its simple calculation, Naive Bayes
is a very fast algorithm and has typically no parameters for configuration.

4.2 Performance Evaluation

There are different metrics for performance evaluation of learners. Which metric to
choose, depends on the requirements imposed by the exploiting system. The standard
performance measurement of learning algorithms is accuracy. It is calculated on the
basis of the test set. Examples xn+1, xn+2, ..., xn+m are handed over to the learned
function f , delivering ŷ = f(x). Then, the known true value y is compared to the
predicted ŷ. Drawing training and test set under the same distribution D leads to
an estimate of the true performance of the learner indicating, e. g., how often ŷ = y.
The estimation is determined by generating a set of examples and splitting it into
training and test set. This is done in cross validation: N -fold cross validation randomly
partitions an example set into N sets, uses N−1 sets for training and the remaining set

- 8 -

for testing. The estimated performance of a learner is the average of the measurements
of the N training and test cycles.

In case of compiler optimizations, program run time is crucial. For embedded sys-
tems acting as real-time systems, the main goal is to find a learner that yields highest
WCET reduction. The WCET of a program is the longest execution time that can ever
occur. Since the input to the program leading to the worst-case behavior is often not
known and an exhaustive testing of all inputs is not feasible, measurements are not
suitable for a WCET determination. To obtain the WCET, formal methods are used
instead. The control flow graph of the program is statically analyzed taking addition
information from the user, like loop iteration counts, into account. To cover all possible
input data, abstraction from concrete values is used. Thus, the determination of the
actual WCET is lifted to the derivation of an upper bound on the execution time of
the program. In this paper, we use the term WCET as a synonym for a safe WCET
estimation of the actual WCET.

The performance evaluation of a learner based on the accuracy is not appropriate
since it does not allow to draw conclusions about the program’s WCET.

Example 1: Assume that a learning model acting as a compiler heuristic has to take
three optimization decisions. The costs (impact on program’s WCET in cycles) for the
correct prediction/misprediction of the decisions are: CostA = 1/− 1, CostB = 1/− 1,
and CostC = 10/−10. Predicting A and B correctly, but not C, results in an accuracy
of 66, 6% and a negative impact on the WCET of (1 + 1 − 10 =) − 8 cycles, while
predicting just C correctly yields a worse accuracy of 33, 3% but a positive impact on
the WCET of (−1 − 1 + 10 =) 8 cycles.

Due to this missing correlation between the accuracy and the program (worst-case)
execution time, learners should be evaluated by directly measuring the program per-
formance but not their accuracy.

Moreover, the classical N -fold cross validation has to be applied in a modified
fashion for the performance evaluation of learners used as optimization heuristics. For
each of the N benchmarks of the example set, all examples belonging to one bench-
mark are excluded (test set), a ML model using the remaining examples (training
set) is learned and this model is finally applied by a compiler to evaluate its im-
pact on the WCET of the excluded benchmark. In more detail, the compiler com-
putes the WCET WCETMLB for this benchmark using the new MLB heuristic and
compares this value against a reference value WCET ref . If ∆WCET n < 1, with
∆WCETn = WCETMLB/WCET ref , then the MLB heuristic was successful. The
final performance is determined by performing the cross validation N times and com-
puting the average relative WCET: performance =

∑N

i=1
∆WCET n/N . Using this

benchmark-wise cross validation is a common approach to estimate the generalization
ability of a learning algorithm, i. e., by applying the models to unseen benchmarks it
can be inferred how well new examples will perform using this model.

4.3 Parameter Optimization

Exhaustively searching over all combinations of user-defineable classifier parameters is
not feasible. We therefore apply an evolutionary strategy [16]. Our approach is depicted
in Figure 2. Each individual pn in a population of size (pop size) represents a combi-
nation of parameter values, e. g., C and γ in case of the SVM with RBF kernel. In the
beginning, the parameters of each individual are initialized randomly. To create a new

- 9 -

Cross
Validation

Best Parameter
Combination

Fitness EvaluationEvolutionary Parameter
Optimization

ML
Model

Performance
Computation

Average Performance
(Parameter Quality)

p1

p2

pn

Fig. 2. Evolutionary Parameter Optimization

generation, a fraction of the individuals repeatedly takes part in a tournament selection
which chooses fittest individuals (as parents) as long as pop size individuals are selected.
In a crossover step, individuals mate with a specified probability (crossover prob). They
produce children that contain the exchanged parameter values of their parents. These
children are added to the current population. Then, all individuals are cloned and the
clones are mutated by adding values from a Gaussian distribution to all parameters.
The fitness of each individual is evaluated by a cross-validation which is based e. g.,
on the accuracy or, as in our case, on the reduction of the program’s WCET. More
accurately, for each individual a machine learning model is induced based on N − 1
benchmarks and evaluated for the left-out benchmark. This performance computa-
tion is repeated N times and its average value represents the quality of a parameter
combination. The whole process maintains the best individuals (elitist selection) and
terminates if either a specified maximum number of generations (max gen) is reached
or there was no improvement over imp generations.

5 Case Study: Loop Invariant Code Motion

Loop invariant code motion (LICM) is a well-known ACET optimization. It recognizes
computations within a loop that produce the same result each time the loop is executed.
These computations are called loop invariant code and can be moved outside the loop
body without changing the program semantics [19].

Definition 1. An instruction i is said to be loop invariant iff: (a) its operands are
constants, or (b) all instructions that define the operands of instruction i are outside
the loop, or (c) all instructions that define the operands of instruction i are themselves
loop invariant.

LICM can be applied at the source code level to expressions, or at the assembly
level, in particular to addressing computations that access elements of arrays. The
positive effects are a reduced execution frequency of the moved loop-invariant code.
Another positive effect of the optimization is that it might shorten the live ranges of
variables leading to a decreased register pressure.

Besides these positive effects on the code, LICM may also degrade performance.
This is mainly due to two reasons. First, the newly created variables to store the loop-
invariant results outside the loop increase the register pressure in the loops since their
live range spans across the entire loop nest. This might possibly lead to additional
register spill code. This is an issue especially relevant for embedded systems with a

- 10 -

ICD-C
Parser

LLIR Code
Selector

aiT WCET
Analysis

ANSI-C
Sources

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

Analyses /
Optimizations

&
WCET-aware

Loop Invariant
Code Motion WCET-

Optimized
Assembly

WCET-aware C Compiler WCC

Rapid
Miner

Machine Learning Tool

Feature
Extraction

Fig. 3. Overview of Compiler Framework

small register file. For example, the TriCore processor, that is also used in this work,
has 8 data and 8 address registers serving as general purpose registers. The remaining
8 data and address registers have special purposes, like storage of function arguments
or return addresses, and are thus only partially exploited by the register allocation.
Second, moving the loop invariant code might lengthen other paths of the control flow
graph when the invariants are moved from a less executed to a more frequently executed
path, e. g., moving instructions above a loop’s zero-trip test.

Issues like the impact on the register pressure emphasize the dilemma compiler
writers are faced with during the development of good heuristics. Performing loop
invariant code motion has conflicting goals and it can not be easily predicted if this
transformation is beneficial. LICM heuristics are also missing in standard compiler
literature [19]. In addition, most compilers do not model the complex interactions
between different parts of the code and the loop invariants, but perform LICM whenever
invariants are found without using any heuristics that might avoid the adverse effects.

We tackle the difficult task of finding heuristics for loop invariant code motion using
machine learning. The goal is to find a heuristic that exploits the positive effects of
LICM on the one hand and prohibits the transformation for adverse situations on the
other hand. In contrast to related works dealing with optimizations for which different
heuristics are well-studied, e. g., loop unrolling, we have no hints which strategies for
the LICM heuristic might be promising.

6 Experimental Environment

To demonstrate the practical use of our approach, experiments on a large number of
different benchmarks were conducted. The 39 benchmarks come from the test suites
DSPstone, MediaBench, MiBench, MRTC WCET Benchmark Suite, UTDSP and Net-
Bench. On the one hand, the benchmarks are used to construct the data set for machine
learning (cf. Section 6.2), which serves as training data for the LICM heuristic gener-
ation. On the other hand, they are used in the cross validation phase to evaluate the
performance of the heuristic for WCET minimization. The training set based on these
benchmarks comprises 3491 examples and its construction took about 50 hours on two
Intel Xeon 2.13GHz quad cores. However, please note that the data set construction
has to be performed once off-line.

All experiments were performed in the WCET-aware C compiler WCC [9] for the
Infineon TriCore TC1796 processor. The framework including the integration of the

- 11 -

machine learning tool RapidMiner is depicted in Figure 3. The compiler shown on
the right-hand side of the figure is provided with C source files. After parsing the C
code, it is translated into the high-level intermediate representation ICD-C. At this
level, standard compiler analyses and source code ACET optimizations (not shown
in the figure) can be applied. Next, the code selector translates the code into the
low-level intermediate representation LLIR. At this abstraction level, again different
analyses and optimizations are available. In total, the compiler features 43 different
optimizations which are activated in the highest optimization level O3. Loop invariant
code motion, which is a low-level optimization within WCC, is performed as one of
the last optimizations in the optimization chain. Since it is executed before register
allocation, LICM operates on low-level code which does not contain physical registers
but temporary variables (aka. virtual registers). For benchmarking, O3 is enabled, thus
our WCET-aware LICM operates on highly optimized code.

The key feature of the WCC compiler is the tight integration of the static WCET
analyzer aiT into the compiler backend. This way, WCET timing data is available in
the compiler backend and can be exploited for analyses and optimizations.

6.1 Available Features

The presented compiler framework for the automatic selection of machine learning
models is generic, i. e., it can be exploited to generate heuristics for a large number of
low-level optimizations without any major adaption. To enable this option, a large set of
features extracted from the compiler must be provided. These features must be chosen
such that they cover a wide range of various characteristics of the program. Our feature
extractor (cf. Figure 3) generates 73 features in total which describe characteristics
of single instructions, basic blocks, loops, or functions depending on which low-level
construct is passed to the feature extractor. The features can be classified as follows
(given some examples):

1. Structural features: Type of instruction (arithmetic, load/store, jumps, floating
point, etc.), size of given construct, number of block successors/predecessors,
number of operands in given construct

2. Liveness analysis related: Liveness information (live-in and live-out) of in-
struction, number of defs and uses in instructions/blocks, information about reg-
ister live times (for register pressure estimation)

3. Loop features: Loop nest levels, loop iteration counts
4. Misc: Length of critical path in loop, outcome of static branch prediction for

jump instruction
This set of features is variable, i. e., depending on the application all features or just a
subset can be used. The feature extractor was designed in a flexible way such that new
features can be easily added. For learning algorithms that can only handle numerical
values, nominal features are first transformed into discrete numerical values and then
normalized by a linear transformation into [0, 1].

6.2 Construction of Training Set for WCET-aware LICM

For the loop invariant code motion, 39 benchmarks are involved in the training set
construction. We used WCC’s feature analyzer with the full set of all 73 features. Each
example of the training set was created by analyzing each loop invariant instruction
iinv separately. To do so, corresponding features for iinv as well as for the basic block
bpred, to which iinv is moved, were extracted. The label was determined by estimating

- 12 -

Table 1. Learner-specific parameters, the explored value ranges by the evolutionary search,
and the best found parameter combinations yielding highest WCET reduction.

Parameter Range Best Parameter Range Best

Decision Trees SVM with RBF kernel

max. depth [1;20] 16 C [0;10,000] 2405.15
min. split size [4;100] 19 γ [0;74] 30.08
min. leaf size [2;100] 31 Linear SVM

min. gain [0;0.03] 0.014 C [0;10,000] 616.11
prepr. altern. [3;10] 4 kNN

confidence [0.1;0.5] 0.476 k [3;100] 11

Random Forests Naive Bayes

no of trees [1;100] 7 no configurable parameters

features [1;73] 39

the WCET of region reg before and after LICM. The region reg is defined either as
the loop to which bpred belongs to or, if iinv was moved completely outside a loop, reg
represents the function were iinv is located. Using outer loops for reg instead of the
entire function makes the label extraction more reliable since it captures the effects of
LICM more precisely. A decreased WCET after LICM means that the transformation
is beneficial (label YES) for iinv in its current context (bpred). If the WCET does not
change, also the label YES is used to perform such code motion which possibly enable
optimization potential for subsequent LICM candidates. If a WCET increase due to
adverse LICM effects was identified, the feature vector is labeled with NO to indicate
that the code motion should be avoided for similar cases. For the next example, iinv is
kept in its new position and the next loop invariant instruction is considered.

6.3 Evolutionary Parameter Optimization for WCET-aware LICM

After the construction of the training set for the loop invariant code motion using ex-
clusively the WCC compiler, the evolutionary parameter optimization for the selection
of the best ML model requires a communication with RapidMiner.

The parameter optimization is performed for each of the six considered machine
learners to find the model yielding the highest WCET reduction. The evolutionary
algorithm generates different valid parameter combinations which are employed for the
fitness evaluation. For our experiments we used the following parameters for the evo-
lutionary algorithm: population size pop size=20, number of generations max gen=5,
tournament selection performed on 30% of population size with a crossover probability
crossover prob=90%, and termination if no improvement for imp=2 generations was
observed (cf. Section 4.3).

The fitness evaluation is based on the benchmark-wise cross validation (cf. Sec-
tion 4.2). For a given combination of parameters determined by the evolutionary al-
gorithm, a model based on the training set of benchmarks is learned and validated
against the benchmark from the test set, i. e., WCC computes the WCET WCETMLB

for this benchmarks using O3 and the LICM heuristic based on the current model.
This step is repeated for each of the N=39 benchmarks. To determine the quality of
the model, WCETMLB is compared against a reference value WCETref represent-
ing the WCET for this benchmark using O3 and disabled LICM. Finally, the fitness
value which represents the quality of a given parameter combination is computed by:

- 13 -

Table 2. Performance results for different parameter combinations as found by evolutionary
search.

Learner Best Worst Avg. Acc.

Decision Tree 96.17% 99.78% 97.42% 63.16%
Random Forests 96.60% 98.96% 97.69% 60.43%
Linear SVM 98.24% 98.62% 98.34% 53.50%
SVM with RBF kernel 95.36% 98.80% 97.12% 57.78%
kNN 97.32% 98.94% 97.98% 67.48%

Naive Bayes 98.17% 98.17% 98.17% 54.31%

fitness =
∑N

i=1
∆WCETn/N . Obviously, this is a minimization problem, with smaller

fitness being better.
The output of the evolutionary parameter search is the machine learning model us-

ing the detected parameter settings that led to the highest WCET reduction. Our
framework automatically performs the parameter optimization for each considered
learner to find the model that exhibits the overall best WCET improvement. This
model (heuristic) is finally integrated into the compiler. For future use of the novel
WCET-aware LICM, the WCC compiler performs a feature extraction and consults
RapidMiner to retrieve a prediction whether the considered loop invariant instruction
promises a WCET reduction. The communication between WCC and RapidMiner is
established in an efficient way, thus the additional overhead is marginal.

7 Results

In a first phase, the machine learning model selection was performed to find the best
learner. Table 1 gives an overview of the considered learners, their parameters, and the
explored parameter values by the evolutionary search (column Range). Please note that
Naive Bayes does not provide any parameters to be optimized. However, the algorithm
was considered due to its popularity and its specific functionality.

Table 2 summarizes the results of the evolutionary parameter optimizations for the
six considered learners. The results in the second, third, and fourth column represent
the performance values, i. e., the averaged relative WCET results obtained during the
benchmark-wise cross validation (cf. Section 6.3) when comparing the WCET using
the MLB heuristic against the code compiled with O3 and without LICM. In more
detail, the second column (Best) represents the highest improvement of the WCET
observed during the evolutionary search of each learner. These values were achieved
using the parameter combinations shown in the third column of Table 1. For example,
95.36% for SVM with RBF kernel means that the WCET was reduced on average by
4.64%. The third and fourth column (Worst, Avg.) of Table 2 depict the worst and
average WCET reduction (over all runs) found by the evolutionary search. Finally,
the last column (Acc.) describes the classification accuracy that was computed for the
parameter combination that lead to the best WCET reduction shown in the second
column. The bold numbers point out the best results observed for all learners.

Three main conclusions can be drawn from this table. First, it can be seen that
the WCET improvements significantly vary between the learners. For the considered
learners and their best parameters, the relative WCET for the 39 benchmarks varies
for the best parameters between 95.36% for SVM with RBF kernel as best model
and 98.24% for the Linear SVM. Thus, a comparison of various learners is required

- 14 -

94.5

95.5

96.5

97.5

98.5

99.5

1 2 3 4 5

Generation

Fittest Individual Standard Parameters

R
e

la
ti

v
e

W
C

E
T

E
S

T
[%

]

Fig. 4. Progress of Evolutionary Parameter Optimization

for the determination of the best model. Even though the difference of 2.9% might
seem small, it should be taken into account that standard LICM achieves on average a
WCET reduction of merely 0.6% (as will be shown later). Thus, the variation between
the learners can be considered substantial and for other compiler optimizations with
stronger effects on the program performance even considerably larger differences can be
expected. Note also that the variance of 2.9% can not be referred to noise since statically
computed WCET estimations are deterministic as the analysis always assumes the
same worst-case run-time environment. Second, a comparison between the second
and third column in Table 2 emphasizes the importance of a parameter optimization.
For example, the choice of parameter settings for the learner Decision Tree generates
LICM heuristics for which the relative WCET ranges between 96.17% and 99.78%,
i. e., selecting inappropriate parameters may waste up to 3.61% on average of the
optimization potential w. r. t. the WCET reduction. Third, a comparison between
the WCET performance in the second column and the accuracy in the last column
indicates that there is no direct correlation between these two performance metrics (cf.
Section 4.2). For example, the highest accuracy of 67.48% was achieved for the kNN
learner, while the average WCET reduction of 2.68% is poor compared to the other
learners. Thus, finding the best model can be only accomplished when the model is
directly evaluated against the considered objectives, in our case the WCET.

Figure 4 depicts the progress of the evolutionary parameter optimizations over 5
generations for the best learner (SVM with RBF kernel). The plot depicts the fittest
individual (parameter combination) in each generation. As can be seen, the perfor-
mance of the fittest individual is successively improved in the first four generations
before no better parameters can be found in the last generation. This monotonically
decreasing curve suggests that the evolutionary parameter optimization is the right
choice for the search of good parameter settings in a large space. Also, a compar-
ison between the performance of 98.71% for the standard SVM parameter settings
(C = 0, γ = 1) and the performance of 95.36% for the best parameter combination
found by the evolutionary search emphasizes the benefits of this approach. In order to
evaluate the effectiveness of our machine learning based LICM heuristic, we measured
the impact of our MLB heuristics for LICM on the WCET estimates (WCET EST)
of the considered 39 benchmarks. Figure 5 shows a comparison between the standard
ACET LICM (Standard-LICM) and our optimization (MLB WCET-LICM) using the
best heuristic generated by the SVM with RBF kernel learner. The reference mark of
100% corresponds to the WCET estimates for O3 with disabled LICM. Due to the
challenges for the manual generation of an appropriate heuristic (cf. Section 5), the
standard approach for LICM in many compilers is the application of the code trans-
formation whenever possible. The light bars representing the MLB-LICM show WCET
estimates computed during the benchmark-wise cross validation. By learning a model

- 15 -

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

ad
pc

m
_g

72
1_

bo
ar

d_
te

st

bi
na

ry
se

ar
ch

bs
or

t1
00

cj
peg

_j
peg

6b
_t
ra

ns
up

p

co
de

cs
_dc

odr
le
1

co
m

pr
es

sd
at

a

co
un

tn
eg

at
iv
e

cr
c

ed
n

ep
ic

fd
ct fft

1

fib
ca

ll fir

fir
_2

56_
64

fir
2d

im

g7
21

.m
arc

us
le
e_d

ec
od

er

g7
21

_e
nc

ode
h2

63

ha
m
m

in
g_w

in
dow

hi
st
ogr

am

iir
_4

_6
4

iir
_b

iq
ua

d_
N
_s

ec
tio

ns

in
se

rts
ort

la
tn

rm
_3

2_
64

lc
dnu

m lm
s

lm
sf
ir_

32_
64 lp

c

lu
dc

m
p

m
at

rix
1x3

m
at

rix
2

m
d5

n_
co

m
pl
ex

_u
pda

te
s

n_
re

al
_u

pd
at

es

qm
f_

re
ce

iv
e

se
ar

ch
m

ul
tia

rra
y

sp
ec

tra
l

v3
2.

m
ode

m
_a

ch
op

av
er

age

Benchmarks

Standard-LICM MLB WCET-LICM

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

Fig. 5. Relative WCET Estimates for Standard and MLB LICM

and validating it on the excluded benchmark, the light bars indicate how good the
heuristic performs on unseen data. As can be seen in the figure, in most cases the new
MLB-LICM outperforms the standard LICM optimization, with up to 36.98% for the
fir benchmark from the MRTC WCET Benchmark Suite. On average, the standard
LICM achieves a WCET reduction of merely 0.56%, while our MLB-LICM reduces the
WCET by 4.34%, as already shown in Table 2.

Most of the time for the evolutionary search was consumed by the WCET analyses.
For one run of the benchmark-wise cross validation, i. e., inducing 39 models and using
them for the WCET estimation of each benchmark in the test set, about 50 minutes on
a single Intel Xeon 2.13GHz core of a system with 8GB RAM were required. Depending
on the development of the evolutionary search, the maximal run time of 146 hours was
observed for the evaluation of the learner Random Forests.

8 Conclusions and Future Work

Recent work has shown that machine learning can be exploited for the automatic
generation of high-performance and easily adaptable compiler optimization heuristics.
A central questions in this domain is that of model selection, i. e., which learners and
their respective parameters should be used. This paper is the first one to address
this well-known problem in a systematic way. We explore the potential of six popular
learning algorithms using an evolutionary parameter optimization. In a case study, we
exploit our novel compiler framework for the generation of heuristics for loop invariant
code motion aiming at a WCET reduction. In contrast to standard LICM yielding
an average WCET reduction of 0.56% on 39 real-life benchmarks, our new heuristics
achieve a WCET reduction of 4.34% on average.

In the future, we intend to integrate further learning algorithms into our framework
to explore their potential. Also, these algorithms require further evaluation to figure
out why some learners work well or why not. Another important issue for future work is
the integration of further compiler optimizations, e. g., register allocation, to study the
generality of our methodology. The investigation of optimizations with bigger pay-offs
can possibly better highlight the potential of our system. Moreover, we want to tackle
another important issue of the model selection problem, the feature selection, which
finds promising features from the set of extracted features. In [25] it has been shown
that using an appropriate representation for training is beneficial for every learner and
that particular learners show different preferences for the representation of features.

- 16 -

References

1. AbsInt Angewandte Informatik GmbH: Worst-Case Execution Time Analyzer aiT for
TriCore. http://www.absint.com/ait (2009)

2. Agakov, F., Bonilla, E., Cavazos, J., et al.: Using Machine Learning to Focus Iterative
Optimization. In: Proc. of CGO. New York, USA (2006)

3. Almagor, L., Cooper, K.D., Grosul, A., et al.: Finding Effective Compilation Sequences.
In: Proc. of the LCTES. Ottawa, Canada (2004)

4. Campoy, A., Puaut, I., Ivars, A., Mataix, J.: Cache Contents Selection for Statically-
Locked Instruction Caches: An Algorithm Comparison. In: Proc. of ECRTS (2005)

5. Cavazos, J., Fursin, G., Agakov, F., et al.: Rapidly Selecting Good Compiler Optimizations
using Performance Counters. In: Proc. of CGO. San Jose, USA (2007)

6. Cavazos, J., Moss, J.E.B.: Inducing Heuristics to Decide Whether to Schedule. SIGPLAN
Not. 39(6) (2004)

7. Deverge, J.F., Puaut, I.: WCET-Directed Dynamic Scratchpad Memory Allocation of
Data. In: Proc. of ECRTS. Pisa, Italy (2007)

8. Falk, H., Kleinsorge, J.C.: Optimal Static WCET-aware Scratchpad Allocation of Program
Code. In: Proc. of DAC. San Francisco, USA (2009)

9. Falk, H., Lokuciejewski, P., Theiling, H.: Design of a WCET-Aware C Compiler. In: Proc.
of ESTIMEDIA (2006)

10. Hastie, T., Tibshirani, R., Friedman, R.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics, Springer, Berlin (2008)

11. Kulkarni, P.A., Hines, S.R., Whalley, D.B., et al.: Fast and Efficient Searches for Effective
Optimization-phase Sequences. ACM TACO 2(2) (2005)

12. Leather, H., Bonilla, E., O’Boyle, M.: Automatic Feature Generation for Machine Learning
Based Optimizing Compilation. In: Proc. of CGO. Seattle, USA (2009)

13. Leather, H., O’Boyle, M., Worton, B.: Raced Profiles: Efficient Selection of Competing
Compiler Optimizations. In: Proc. of LCTES. Dublin, Ireland (2009)

14. Lokuciejewski, P., Gedikli, F., Marwedel, P., Morik, K.: Automatic WCET Reduction by
Machine Learning Based Heuristics for Function Inlining. In: Proc. of SMART. Paphos,
Cyprus (2009)

15. Mark Stephenson and Saman Amarasinghe: Predicting Unroll Factors Using Supervised
Classification. In: Proc. of CGO. San Jose, USA (2005)

16. Mierswa, I.: Non-Convex and Multi-Objective Optimization in Data Mining. Ph.D. thesis,
Technische Universität Dortmund (2008)

17. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping
for Complex Data Mining Tasks. In: Proc. of KDD. Philadelphia, USA (2006)

18. Monsifrot, A., Bodin, F., Quiniou, R.: A Machine Learning Approach to Automatic Pro-
duction of Compiler Heuristics. In: Proc. of AIMSA. Varna, Bulgaria (2002)

19. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, USA (1997)

20. Srikant, Y.N., Shankar, P.: The Compiler Design Handbook: Optimizations and Machine
Code Generation, Second Edition. CRC Press, Inc., Boca Raton, FL, USA (2007)

21. Stephenson, M., Amarasinghe, S., Martin, M., O’Reilly, U.M.: Meta Optimization: Im-
proving Compiler Heuristics with Machine Learning. SIGPLAN Not. 38(5) (2003)

22. Suhendra, V., Mitra, T., Roychoudhury, A., Chen, T.: WCET Centric Data Allocation to
Scratchpad Memory. In: Proc. of RTSS. Miami, USA (2005)

23. Vaswani, K., Thazhuthaveetil, M.J., Srikant, et al.: Microarchitecture Sensitive Empirical
Models for Compiler Optimizations. In: Proc. of CGO. San Jose, USA (2007)

24. Vera, X., Lisper, B., Xue, J.: Data Cache Locking for Higher Program Predictability. In:
Proc. of SIGMETRICS (2003)

25. Wurst, M., Morik, K.: Distributed Feature Extraction in a P2P Setting - A Case Study.
Future Generation Computer Systems, Special Issue on Data Mining 23(1) (2007)

26. Zhao, W., Kulkarni, P., Whalley, D., et al.: Tuning the WCET of Embedded Applications.
In: Proc. of RTAS. Toronto, Canada (2004)

- 17 -

Application Heartbeats

A Generic Interface for Expressing Performance Goals and
Progress in Self-Tuning Systems

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller,
and Anant Agarwal

Massachusetts Institute of Technology
{hank,eastepjm,santa,jasonm,agarwal}@csail.mit.edu

Abstract. Self-tuning, self-aware, or adaptive computing has been pro-
posed as one method to help application programmers confront the grow-
ing complexity of multicore software development. Such systems have
been proposed for architectures, compilers, and operating systems to
ease the application programmer’s burden by providing services that au-
tomatically customize to meet the needs of the application. However,
these systems often rely on ad hoc methods for understanding and mon-
itoring an application and thus struggle to incorporate the true perfor-
mance goals of the applications they are designed to support. This paper
presents the Application Heartbeats API which addresses the need to
provide a standardized interface for applications to communicate with
supportive adaptive systems. The Application Heartbeats framework
provides a simple, standard programming interface that applications can
use to indicate their performance and which system software can use to
query that performance. Several experiments demonstrate the simplicity
and efficacy of the Application Heartbeat approach.

1 Introduction

As multicore processors become increasingly prevalent, system complexities are
skyrocketing. It is no longer practical for an average programmer to balance all
of the system constraints and produce an application that performs well on a
variety of machines, in a variety of situations. One approach to simplifying the
programmer’s task is the use of self-tuning, or adpative hardware and software.
Self-tuning systems take some of the burden off of programmers by monitoring
themselves and optimizing or adapting as necessary to meet their goals.

As described in [1], adaptive systems must be able to monitor their environ-
ment as well as detect significant changes. Despite this need, there is no standard-
ized, general approach for applications and systems to measure how well they
are meeting their goals. Existing approaches are largely ad hoc: either hand-
crafted for a particular system or reliant on architecture-specific performance
counters. Not only are these approaches fragile and unlikely to be portable to
other systems, they frequently do not capture the actual goal of the applica-
tion. For example, measuring the number of instructions executed in a period

- 18 -

of time does not tell you whether those instructions were doing useful work or
spinning on a lock; reliance on CPU utilization or cache miss rates has similar
drawbacks. The problem with mechanisms such as performance counters is that
they attempt to infer high-level application performance from low-level machine
performance. What is needed is a portable, universal method of monitoring an
application’s actual progress towards its goals.

This paper introduces a software framework called Application Heartbeats
(or just Heartbeats for short) that provides a simple, standardized way for ap-
plications to monitor their performance and make that information available to
external observers. The framework allows programmers to express their appli-
cation’s goals and the progress that it is making using a simple API. As shown
in Figure 1, this progress can then be observed by either the application it-
self or an external system (such as the OS or another application) so that the
application or system can tune its behavior to make sure the goals are met.
Application-specific goals may include throughput, power, latency, quality-of-
service, or combinations thereof. Application Heartbeats can also help provide
fault tolerance by providing information that can be used to predict or quickly
detect failures.

(a) (b)
App

framework

API

AP
I

App Parameters

App

framework

AP
I API OS

Machine

System Parameters

Fig. 1. (a) Self-optimizing application using the Application Heartbeats framework.
(b) Optimization of machine parameters by an external observer.

This paper makes the following contributions:

1. A simple, standardized Heartbeats API for specifying and monitoring application-
specific performance metrics.

2. Examples of ways that the framework can be used, both within an applica-
tion and by external services, to develop self-optimizing applications. Exper-
imental results demonstrate the effectiveness of the Application Heartbeats
approach.

The rest of this paper is organized as follows. Section 2 identifies key sys-
tem components that will benefit from the Application Heartbeats framework.
Section 3 describes the Application Heartbeats API in greater detail. Section 4
presents our experimental results. Section 5 compares Application Heartbeats
to related work. Finally, Section 6 concludes.

- 19 -

2 Heartbeat Usage in System Software and Hardware

The Application Heartbeats framework is a simple end-to-end feedback mech-
anism that can potentially have a large impact on the design of adaptive and
self-tuning computer systems. This section explores ideas for novel computer ar-
chitectures, operating systems, and compilers which may exploit the Heartbeats
framework as a feedback mechanism to enable self-tuning.

Self-tuning Architectures. We envision a multicore microarchitecture that
can adapt properties of its TLB, L1 cache, and L2 cache structures such as as-
sociativity, size, replacement policy, etc. to improve performance or minimize
energy for a given performance level. We envision a multicore microarchitecture
that can adapt its execution pipeline in a way similar to the heterogeneous mul-
ticores proposed in [2]. Lastly, we envision a multicore microarchitecture where
decisions about dynamic frequency and voltage scaling are driven by the per-
formance measurements and target heart rate mechanisms of the Heartbeats
framework. [3, 4] are examples of frequency and voltage scaling to reduce power.
Driving these new microarchitectures with an end-to-end mechanism such as
a heartbeat, as opposed to indicators such as cache misses or utilization, en-
sures that microarchitectural optimizations focus on aspects of execution most
important to meeting application goals.

Organic Operating Systems. Heartbeats provides a framework for novel
operating systems with organic features such as self-healing and intelligent re-
source management. Heartbeats allow an OS to determine when applications fail
and quickly restart them. Heartbeats provide the feedback necessary to make
decisions about how many cores to allocate to an application. An organic OS
would be able to automatically and dynamically adjust the number of cores an
application uses based on an individual application’s changing needs as well as
the needs of other applications competing for resources. The OS would adjust
the number of cores and observe the effect on the application’s heart rate. An
organic OS could also take advantage of the Heartbeats framework in the sched-
uler. Schedulers could be designed to run an application for a specific number of
heartbeats (implying a variable amount of time) instead of a fixed time quanta.
Schedulers could be designed that prioritize time allocation based on the target
heart rate requirements of different applications. Locking mechanisms provided
through the OS can be improved using Heartbeats. For example, Smartlocks
[5], an adaptive locking framework, uses the Heartbeats API to obtain a direct
measure of program performance and adapt locking and scheduling policies to
meet the performance goals of the application. Heartbeats provide Smartlocks
with a direct measure of application performance as opposed to using statistics
gathered within the lock library such as lock contention.

Adaptive Compilation. Adaptive [6] and dynamic [7] compilation tech-
niques have emerged to increase portability and address some challenges that
cannot be met by traditional static compilation. Heartbeats could be used to
improve the design of these compilers in several ways. First, by providing a
standard interface the Heartbeat API allows one program to work with multiple
compilers without source-level code changes. Second, by providing a mechanism

- 20 -

Table 1. Heartbeat API functions

Function Name Arguments Description
HB initialize window[int], local[bool] Initialize the Heartbeat runtime system and

specify how many heartbeats will be used to
calculate the default average heart rate

HB heartbeat tag[int], local[bool] Generate a heartbeat to indicate progress
HB current rate window[int], local[bool] Returns the average heart rate calculated

from the last window heartbeats
HB set target rate min[int], max[int], local[bool] Called by the application to indicate to an

external observer the average heart rate it
wants to maintain

HB get target min local[bool] Called by the application or an external ob-
server to retrieve the minimum target heart
rate set by HB set target rate

HB get target max local[bool] Called by the application or an external ob-
server to retrieve the maximum target heart
rate set by HB set target rate

HB get history n[int], local[bool] Returns the timestamp, tag, and thread ID
for the last n heartbeats

for specifying program goals Heartbeats allow dynamic compilers to know when
to stop optimizing, allowing the system to save energy by avoiding unnecessary
work. Third, the Heartbeat API allows application code to specify the regions
of the application where performance is critical, again allowing the system to
avoid unnecessary optimization. As an example, the SpeedPress compiler inserts
a runtime system, called SpeedGuard, into an application which uses Heartbeats
to detect performance changes. The SpeedGuard runtime can then trade quality-
of-service for performance in order to maintain the real-time goals of a system
in the face of faults like core-failures and clock frequency changes [8].

3 Heartbeats API

Since heartbeats are meant to reduce programmer effort, they must be easy to
insert into applications. The basic Heartbeat API consists of only a few functions
(shown in Table 1) that can be called from applications or system software. To
maintain a simple, conventional programming style, the Heartbeats API uses
only standard function calls and does not rely on complex mechanisms such as
OS callbacks.

The key function in the Heartbeat API is HB heartbeat. Calls to HB heartbeat
are inserted into the application code at significant points to register the appli-
cation’s progress. Each time HB heartbeat is called, a heartbeat event is logged.
Each heartbeat generated is automatically stamped with the current time and
thread ID of the caller. In addition, the user may specify a tag that can be used
to provide additional information. For example, a video application may wish
to indicate the type of frame (I, B or P) to which the heartbeat corresponds.
Tags can also be used as sequence numbers in situations where some heartbeats
may be dropped or reordered. Using the local flag, the user can specify whether

- 21 -

the heartbeat should be counted as a local (per-thread) heartbeat or as a global
(per-application) heartbeat.

We anticipate that many applications will generate heartbeats in a regular
pattern. For example, the video encoders may generate a heartbeat for every
frame of video. For these applications, it is likely that the key metric will be
the average frequency of heartbeats or heart rate. The HB current rate function
returns the average heart rate for the most recent heartbeats.

Different applications and observers may be concerned with either long- or
short-term trends. Therefore, it should be possible to specify the number of
heartbeats (or window) used to calculate the moving average. Regarding win-
dow size there may be some tension between the application registering the
heartbeats and the system service reading the heartbeats. We assume that the
application knows which window size is most appropriate for the computation it
is performing; however, the system service responding to this information may
want to override this window if it is trying to make adjustments on a different
granularity. Therefore, the API allows the application to set the window size and
this size is the default used whenever an external system requests the current
heartrate. An additional API call allows system software to override the window
size.

Applications with real-time deadlines or performance goals will generally
have a target heart rate that they wish to maintain. For example, if a heartbeat
is produced at the completion of a task, then this corresponds to completing a
certain number of tasks per second. Some applications will observe their own
heartbeats and take corrective action if they are not meeting their goals. How-
ever, some actions (such as adjusting scheduler priorities or allocated resources)
may require help from an external source such as the operating system. In these
situations, it is helpful for the application to communicate its goals to an exter-
nal observer. For this, we provide the HB set target rate function which allows
the application to specify a target heart rate range. The external observer can
then take steps on its own if it sees that the application is not meeting (or is
exceeding) its goals.

When more in-depth analysis of heartbeats are required, the HB get history
function can be used to get a complete log of recent heartbeats. It returns an
array of the last n heartbeats in the order that they were produced. This allows
the user to examine intervals between individual heartbeats or filter heartbeats
according to their tags. Most systems will probably place an upper limit on the
value of n to simplify bookkeeping and prevent excessive memory usage. This
provides the option to efficiently store heartbeats in a circular buffer. When the
buffer fills, old heartbeats are simply dropped.

Multithreaded applications may require both per-thread and global heart-
beats. For example, if different threads are working on independent objects,
they should use separate heartbeats so that the system can optimize them in-
dependently. If multiple threads are working together on a single object, they
would likely share a global heartbeat. Thus, each thread should have its own pri-
vate heartbeat history buffer and each application should have a single shared

- 22 -

history buffer. Threads may read and write to their own buffer and the global
buffer but not the other threads’ buffers.

Some systems may contain hardware that can automatically adapt using
heartbeat information. For example, a processor core could automatically adjust
its own frequency to maintain a desired heart rate in the application. Therefore,
it must be possible for hardware to directly read from the heartbeat buffers. In
this case the hardware must be designed to manipulate the buffers’ data struc-
tures just as software would. To facilitate this, a standard must be established
specifying the components and layout of the heartbeat data structures in mem-
ory. Hardware within a core should be able to access the private heartbeats for
any threads running on that core as well as the global heartbeats for an appli-
cation. We leave the establishment of this standard and the design of hardware
that uses it to future work.

4 Experimental Results

This section presents several examples illustrating the use of the Heartbeats
framework. First, a brief study is presented using Heartbeats to instrument the
PARSEC benchmark suite [9]. Next, an adaptive H.264 encoder is developed to
demonstrate how an application can use the Heartbeats framework to modify
its own behavior. Then an adaptive scheduler is described to illustrate how an
external service can use Heartbeats to respond directly to the needs of a running
application. Finally, the adaptive H.264 encoder is used to show how Heartbeats
can help build fault-tolerant applications. All results discussed in this section
were collected on an Intel x86 server with dual 3.16 GHz Xeon X5460 quad-core
processors.

4.1 Heartbeats in the PARSEC Benchmark Suite

To demonstrate the applicability of the Heartbeats framework across a range of
multicore applications, it is applied to the PARSEC benchmark suite (version
1.0). For each benchmark, we read the description of the application, find the
outermost loop and insert the heartbeats in this loop. Table 2 shows where the
heartbeat was inserted in terms of the application’s processing and the average
heart rate that the benchmark achieved over the course of its execution running
the “native” input data set on the eight-core x86 test platform1. We note that
placement of heartbeats is flexible and can be tailored to the specific needs of
the application.

For all benchmarks presented here, the Heartbeats framework is low-overhead.
For eight of the ten benchmarks the overhead of Heartbeats was negligible.
For the blackscholes benchmark, the overhead is negligible when registering
a heartbeat every 25,000 options; however, in the first attempt a heartbeat was
registered after every option was processed and this added an order of magnitude

1 Two benchmarks are missing as neither freqmine nor vips would compile on the target
system due to issues with the installed version of gcc.

- 23 -

Table 2. Heartbeats in the PARSEC Benchmark Suite

Benchmark Heartbeat Location Average Heart Rate (beat/s)

blackscholes Every 25000 options 561.03
bodytrack Every frame 4.31
canneal Every 1875 moves 1043.76
dedup Every “chunk” 264.30

facesim Every frame 0.72
ferret Every query 40.78

fluidanimate Every frame 41.25
streamcluster Every 200000 points 0.02

swaptions Every “swaption” 2.27
x264 Every frame 11.32

slow-down. For the other benchmark with measurable overhead, facesim, the
added time due to the use of Heartbeats is less than 5 %.

Adding heartbeats to the PARSEC benchmark suite is easy, even for users
who are unfamiliar with the benchmarks themselves. The PARSEC documenta-
tion describes the inputs for each benchmark. With that information it is simple
to find the key loops over the input data set and insert the call to register a
heartbeat in this loop. The total amount of code required to add heartbeats to
each of the benchmarks is under half-a-dozen lines. The extra code is simply the
inclusion of the header file and declaration of a Heartbeat data structure, calls
to initialize and finalize the Heartbeats run-time system, and the call to register
each heartbeat.

In summary, the Heartbeats framework is easy to insert into a broad array of
applications and our reference implementation is low-overhead. The next section
provides an example of using the Heartbeats framework to develop an adaptive
application.

4.2 Internal Heartbeat Usage

This example shows how Heartbeats can be used within an application to help
a real-time H.264 video encoder maintain an acceptable frame rate by adjusting
its encoding quality to increase performance. For this experiment the x264 im-
plementation of an H.264 video encoder [10] is augmented so that a heartbeat
is registered after each frame is encoded. x264 registers a heartbeat after every
frame and checks its heart rate every 40 frames. When the application checks its
heart rate, it looks to see if the average over the last forty frames was less than
30 beats per second (corresponding to 30 frames per second). If the heart rate is
less than the target, the application adjusts its encoding algorithms to get more
performance while possibly sacrificing the quality of the encoded image.

For this experiment, x264 is launched with a computationally demanding set
of parameters for Main profile H.264 encoding. Both the input parameters and
the video used here are different than the PARSEC inputs; both are chosen to
be more computationally demanding and more uniform. The parameters include

- 24 -

the use of exhaustive search techniques for motion estimation, the analysis of
all macroblock sub-partitionings, x264’s most demanding sub-pixel motion esti-
mation, and the use of up to five reference frames for coding predicted frames.
Even on the eight core machine with x264’s assembly optimizations enabled, the
unmodified x264 code-base achieves only 8.8 heartbeats per second with these
inputs.

As the Heartbeat-enabled x264 executes, it reads its heart rate and changes
algorithms and other parameters to attempt to reach an encoding speed of 30
heartbeats per second. As these adjustments are made, x264 switches to algo-
rithms which are faster, but may produce lower quality encoded images.

Figures 2(a) and 2(b) illustrate the behavior of this adaptive version of x264
as it attempts to reach its target heart rate of 30 beats per second. The first
figure shows the average heart rate over the last 40 frames as a function of time
(time is measured in heartbeats or frames). The second figure illustrates how the
change in algorithm affects the quality (measured in peak signal to noise ratio)
of the encoded frames.

0

5

10

15

20

25

30

35

40

0 200 400 600

Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/
s)

Adaptive FPS
Performance Goal

(a) Heart rate

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600

Time (Heartbeat)

P
S

N
R

 D
if

fe
re

n
c

e

(b) Image Quality

Fig. 2. Heart rate and image quality of adaptive x264. (a) shows how the heart rate
of x264 changes as the program adapts to meet its goals. (b) shows the difference in
PSNR between the unmodified x264 code base and our adaptive version.

As shown in Figure 2(a) the adaptive implementation of x264 gradually in-
creases its speed until frame 400, at which point it makes a decision allowing it
to maintain a heart rate over thirty-five beats per second. Given these inputs
and the target performance, the adaptive version of x264 tries several search al-
gorithms for motion estimation and finally settles on the computationally light
diamond search algorithm. Additionally, this version of x264 stops attempting
to use any sub-macroblock partitionings. Finally, the adaptive encoder decides
to use a less demanding sub-pixel motion estimation algorithm.

As shown in Figure 2(b), as x264 increases speed, the quality, measured
in PSNR, of the encoded images decreases. This figure shows the difference in
PSNR between the unmodified x264 source code and the Heartbeat-enabled

- 25 -

implementation which adjusts its encoding parameters. In the worst case, the
adaptive version of x264 can lose as much as one dB of PSNR, but the average
loss is closer to 0.5 dB. This quality loss is just at the threshold of what most
people are capable of noticing. However, for a real-time encoder using these
parameters on this architecture the alternative would be to drop two out of
every three frames. Dropping frames has a much larger negative impact on the
perceived quality than losing an average of 0.5 dB of PSNR per frame.

This experiment demonstrates how an application can use the Heartbeats
API to monitor itself and adapt to meet its own needs. This allows the program-
mer to write a single general application that can then be run on different hard-
ware platforms or with different input data streams and automatically maintain
its own real-time goals. This saves time and results in more robust applications
compared to writing a customized version for each individual situation or tuning
the parameters by hand.

Videos demonstrating the adaptive encoder are available online. These videos
are designed to capture the experience of watching encoded video in real-time
as it is produced. The first video shows the heart rate of the encoder without
adaptation2. The second video shows the heart rate of the encoder with adap-
tation3.

4.3 External Heartbeat Usage

In this example, Heartbeats are used to help an external system allocate re-
sources while maintaining required application performance. The application
communicates performance information and goals to an external observer which
attempts to keep performance within the specified range using the minimum
number of cores possible. Three of the Heartbeat-enabled PARSEC benchmarks
are run while an external scheduler reads their heart rates and adjusts the num-
ber of cores allocated to them. The applications tested include the PARSEC
benchmarks bodytrack, streamcluster, and x264.

bodytrack The bodytrack benchmark is a computer vision application that
tracks a person’s movement through a scene. For this application a heartbeat is
registered at every frame. Using all eight cores of the x86 server, the bodytrack
application maintains an average heart rate of over four beats per second. The
external scheduler starts this benchmark on a single core and then adjusts the
number of cores assigned to the application in order to keep performance between
2.5 and 3.5 beats per second.

The behavior of bodytrack under the external scheduler is illustrated in Fig-
ure 3(a). This figure shows the average heart rate as a function of time measured
in beats. As shown in the figure, the scheduler quickly increases the assigned cores
until the application reaches the target range using seven cores. Performance
stays within that range until heartbeat 102, when performance dips below 2.5

2 Available here: http://www.youtube.com/watch?v=c1t30MDcpP0
3 Available here: http://www.youtube.com/watch?v=Msr22JcmYWA

- 26 -

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

Time (Heartbeat)

H
e

a
rt

 R
a

te
 (

b
e

a
t/

s
)

0

1

2

3

4

5

6

7

8

9

C
o

re
s

Heartrate
Target Min
Target Max
Cores

(a) bodytrack

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80

Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/
s)

0

1

2

3

4

5

6

7

8

C
o

re
s

Heartrate
Target Min
Target Max
Cores

(b) streamcluster

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600

Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/
s)

0

1

2

3

4

5

6

7

8

9

10

C
o

re
s

Heart Rate
Target Min
Target Max
Cores

(c) x264

Fig. 3. Behavior of selected PARSEC applications coupled with an external scheduler.

beats per second and the eighth and final core is assigned to the application.
Then, at beat 141 the computational load suddenly decreases and the scheduler
is able to reclaim cores while maintaining the desired performance. In fact, the
application eventually needs only a single core to meet its goal.

The streamcluster benchmark solves the online clustering problem for a
stream of input points by finding a number of medians and assigning each point
to the closest median. For this application one heartbeat is registered for every
5000 input points. Using all eight cores of the x86 server, the streamcluster
benchmark maintains an average heart rate of over 0.75 beats per second. The
scheduler starts this application on a single core and then attempts to keep
performance between 0.5 and 0.55 beats per second.

The behavior of streamcluster under the external scheduler is displayed
in Figure 3(b). This figure shows the average heart rate as a function of time
(measured in heartbeats). The scheduler adds cores to the application to reach
the target heart rate by the twenty-second heartbeat. The scheduler then works
to keep the application within the narrowly defined performance window. The

- 27 -

figure illustrates that the scheduler is able to quickly react to changes in appli-
cation performance by using the Heartbeats interface.

x264 The x264 benchmark is the same code base used in the internal optimiza-
tion experiment described above. Once again, a heartbeat is registered for each
frame. However, for this benchmark the input parameters are modified so that
x264 can easily maintain an average heart rate of over 40 beats per second using
eight cores. The scheduler begins with x264 assigned to a single core and then
adjusts the number of cores to keep performance in the range of 30 to 35 beats
per second.

Figure 3(c) shows the behavior of x264 under the external scheduler. Again,
average heart rate is displayed as a function of time measured in heartbeats. In
this case the scheduler is able to keep x264’s performance within the specified
range while using four to six cores. As shown in the chart the scheduler is able to
quickly adapt to two spikes in performance where the encoder is able to briefly
achieve over 45 beats per second. A video demonstrating the performance of the
encoder running under the adaptive external scheduler has been posted online4.

These experiments demonstrate a fundamental benefit of using the Heart-
beats API for specifying application performance: external services are able to
read the heartbeat data and adapt their behavior to meet the application’s needs.
Furthermore, the Heartbeats interface makes it easy for an external service to
quantify its effects on application behavior. In this example, an external sched-
uler is able to adapt the number of cores assigned to a process based on its heart
rate. This allows the scheduler to use the minimum number of cores necessary
to meet the application’s needs. The decisions the scheduler makes are based
directly on the application’s performance instead of being based on priority or
some other indirect measure.

4.4 Heartbeats for Fault Tolerance

The final example in this section illustrates how the Heartbeats framework can
be used to aid in fault tolerance. This example reuses the adaptive H.264 en-
coder developed above in Section 4.2. The adaptive encoder is initialized with
a parameter set that can achieve a heart rate of 30 beat/s on the eight-core
testbed. At frames 160, 320, and 480, a core failure is simulated by restricting
the scheduler to running x264 on fewer cores. After each core failure the adaptive
encoder detects a drop in heart rate and adjusts its algorithm to try to maintain
its target performance.

The results of this experiment are shown in Figure 4. This figure shows a
moving average of heart rate (using a 20-beat window) as a function of time
for three data sets. The first data set, labeled “Healthy,” shows the behavior
of unmodified x264 for this input running on eight cores with no failures. The
second data set, labeled “Unhealthy,” shows the behavior of unmodified x264
when cores “die” (at frames 160, 320, and 480). Finally, the data set labeled

4 Available here: http://www.youtube.com/watch?v=l3sVaGZKgkc

- 28 -

“Adaptive” shows how the adaptive encoder responds to these changes and is
able to keep its heart rate above the target even in the presence of core failures.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600
Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

ts
/s

)

Healthy
Unhealthy
Adaptive

Fig. 4. Using Heartbeats in an adaptive video encoder for fault tolerance. The line
labeled “Healthy” shows the performance of the encoder under normal circumstances.
The line labeled “Unhealthy” shows the performance of the encoder when cores fail.
The line labeled “Adaptive” shows the performance of an adaptive encoder that adjusts
its algorithm to maintain a target heart rate of greater than 30 beats/s.

Figure 4 shows that in a healthy system, x264 is generally able to main-
tain a heart rate of greater than 30 beat/s. Furthermore, the performance in the
healthy case actually increases slightly towards the end of execution as the input
video becomes slightly easier at the end. In the unhealthy system, where cores
die, the unmodified x264 is not able to maintain its target heart rate and per-
formance falls below 25 beat/s. However, the adaptive encoder is able to change
the algorithm and maintain performance in the face of hardware failures.

The adaptive encoder does not detect a fault or attempt to detect anything
about which, or how many, cores are healthy. Instead, the adaptive encoder only
attempts to detect changes in performance as reflected in the heart rate. The
encoder is then able to adapt its behavior in order to return performance to its
target zone.

The generality of this approach means that the encoder can respond to more
than just core failures. For example, if a cooling fan failed and the hardware low-
ered its supply voltage to reduce power consumption, the encoder would detect
the loss of performance and respond. Any event that alters performance will be
detected by this method and allow the encoder a chance to adapt its behavior in
response. Thus, the Heartbeats framework can aid fault tolerance and detection
by providing a general way to detect changes in application performance.

- 29 -

5 Related Work

The problem of performance monitoring is fundamental to the development
of parallel applications, so it has been addressed by a variety of different ap-
proaches. This work includes research on monitoring single- and multi-core ar-
chitectures [2, 11, 12], networks [13], complex software systems and operating
systems [14–20]. Most of this work focuses on off-line collection and visual-
ization of performance data. More complex monitoring techniques have been
presented in [21, 19]. This work represents a shift in approach as the research
community moves from using simple hardware-based metrics, i.e.,cache miss
rate, to more advanced statistics. Hardware assistance for system monitoring,
often in the form of event counters, is included in most common architectures.
However, counter-based techniques suffer common shortcomings [22]: too few
counters, sampling delay, and lack of address profiling. In addition, adaptive
systems based on hardware event counters must infer application performance
from low-level hardware statistics.

A software approach for application monitoring is proposed in [14]. This
work proposes an assertion based framework which can be used to verify that
the runtime performance meets expected performance. Using the assertions, the
programmer specifies performance expectations which the application can use at
runtime to adapt itself. This framework allows a rich description of the program
performance in terms of hardware specific parameters like the expected rate of
floating point operations; however, use of the framework requires extensive code
annotation and only allows the application to make internal updates to itself. In
contrast, the Heartbeat framework is designed to specify performance in terms
of a simple, and general mechanism and directly communicate this performance
to external systems which can customize their behavior to meet those goals. We
envision the use of the Heartbeat framework within a broader context where
multiple applications can be executed in parallel, each using heartbeats to com-
municate performance and relying on the external services to help them meet
their goals.

The rise of adaptive computing systems creates new challenges and demands
for system monitoring [23]. One example of these emerging adaptive systems
can be found in the self-optimizing memory controller described in [24]. This
controller optimizes its scheduling policy using reinforcement learning to esti-
mate the performance impact of each action it takes. As designed, performance
is measured in terms of memory bus utilization. The controller optimizes mem-
ory bus utilization because that is the only metric available to it, and better
bus utilization generally results in better performance. However, it would be
preferable for the controller to optimize application performance directly and
the Heartbeats API provides a mechanism with which to do so. Furthermore,
the Heartbeats API is kept simple, which makes it easy for not only the end-users
to get started with the framework but also to hook up third party auto-tuning
tools such as Orio [25], Autopilot [26], Active Harmony [27], to make the ap-
plication adaptation decisions based on the observed heartbeat rates. The fact

- 30 -

that this research could be built on top of the Heartbeat interface demonstrates
the API’s usefulness.

System monitoring, as described in this section, is a crucial task for several
very different goals: performance, security, quality of service, etc. Different ad
hoc techniques for self-optimization have been presented in the literature, but the
Heartbeats approach is the only one that provides a simple, unified framework
for reasoning about and addressing all of these goals.

6 Conclusion

Our prototype results indicate that the Heartbeats framework is a useful tool
for both application auto-tuning and externally-driven optimization. Our ex-
perimental results demonstrate three useful applications of the framework: dy-
namically reducing output quality (accuracy) as necessary to meet a throughput
(performance) goal, optimizing system resource allocation by minimizing the
number of cores used to reach a given target output rate, and tolerating failures
by adjusting output quality to compensate for lost computational resources. The
authors have identified several important applications that the framework can
be applied to: self-optimizing microarchitectures, self-tuning software libraries,
smarter system administration tools, novel “Organic” operating systems and
runtime environments, and more profitable cloud computing clusters. We be-
lieve that a unified, portable standard for application performance monitoring
is crucial for a broad range of future applications.

References

1. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2) (2009) 1–42

2. Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., Tullsen, D.: Processor power
reduction via single-isa heterogeneous multi-core architectures. Computer Archi-
tecture Letters 2(1) (Jan-Dec 2003) 2–2

3. Govil, K., Chan, E., Wasserman, H.: Comparing algorithm for dynamic speed-
setting of a low-power CPU. In: MobiCom ’95: Proceedings of the 1st Annual
Inter. Conf. on Mobile Computing and networking. (1995) 13–25

4. Pering, T., Burd, T., Brodersen, R.: The simulation and evaluation of dynamic
voltage scaling algorithms. In: ISLPED ’98: Proceedings of the 1998 Inter. Symp.
on Low Power Electronics and Design. (1998) 76–81

5. Eastep, J., Wingate, D., Santambrogio, M.D., Agarwal, A.: Smartlocks: Self-
aware synchronization through lock acquisition scheduling. Technical Report MIT
CSAIL, MIT (Nov 2009)

6. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amaras-
inghe, S.: PetaBricks: A language and compiler for algorithmic choice. In: Conf.
on Programming Language Design and Implementation. (Jun 2009)

7. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. In: Proceedings of the international symposium on code gen-
eration and optimization. (2003)

- 31 -

8. Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., Rinard, M.: Using Code
Perforation to Improve Performance, Reduce Energy Consumption, and Respond
to Failures . Technical Report MIT-CSAIL-TR-2009-042, MIT (September 2009)

9. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Charac-
terization and architectural implications. In: PACT-2008: Proceedings of the 17th
Inter. Conf. on Parallel Architectures and Compilation Techniques. (Oct 2008)

10. x264. Online document, http://www.videolan.org/x264.html
11. Intel Inc.: Intel itanium architecture software developer’s manual (2006)
12. Azimi, R., Stumm, M., Wisniewski, R.W.: Online performance analysis by statis-

tical sampling of microprocessor performance counters. In: ICS ’05: Proceedings
of the 19th Inter. Conf. on Supercomputing. (2005) 101–110

13. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems 15(5–6) (1999) 757–768

14. Vetter, J., Worley, P.: Asserting performance expectations. In: Supercomputing,
ACM/IEEE 2002 Conference. (Nov. 2002) 33–33

15. Caporuscio, M., Di Marco, A., Inverardi, P.: Run-time performance management
of the siena publish/subscribe middleware. In: WOSP ’05: Proc. of the 5th Inter.
Work. on Software and performance. (2005) 65–74

16. De Rose, L.A., Reed, D.A.: SvPablo: A multi-language architecture-independent
performance analysis system. In: Inter. Conf. on Parallel Processing. (1999)

17. Cascaval, C., Duesterwald, E., Sweeney, P.F., Wisniewski, R.W.: Performance and
environment monitoring for continuous program optimization. IBM J. Res. Dev.
50(2/3) (2006) 239–248

18. Krieger, O., Auslander, M., Rosenburg, B., W., R.W.J., Xenidis, Silva, D.D., Os-
trowski, M., Appavoo, J., Butrico, M., Mergen, M., Waterland, A., Uhlig, V.: K42:
Building a complete operating system. In: EuroSys ’06: Proc. of the 1st ACM
SIGOPS/EuroSys Euro. Conf. on Computer Systems. (2006)

19. Wisniewski, R.W., Rosenburg, B.: Efficient, unified, and scalable performance mon-
itoring for multiprocessor operating systems. In: SC ’03: Proc. of the ACM/IEEE
conf. on Supercomputing. (Nov 2003)

20. Tamches, A., Miller, B.P.: Fine-grained dynamic instrumentation of commodity
operating system kernels. In: OSDI ’99: Proc. of the third symp. on Operating
systems design and implementation. (1999)

21. Schulz, M., White, B.S., McKee, S.A., Lee, H.H.S., Jeitner, J.: Owl: next generation
system monitoring. In: CF ’05: Proc. of the 2nd conf. on Computing Frontiers.
(2005)

22. Sprunt, B.: The basics of performance-monitoring hardware. IEEE Micro 22(4)
(Jul/Aug 2002) 64–71

23. Dini, P.: Internet, GRID, self-adaptability and beyond: Are we ready? (Aug 2004)
24. Ipek, E., Mutlu, O., Martnez, J.F., Caruana, R.: Self-optimizing memory con-

trollers: A reinforcement learning approach. In: ISCA ’08: Proc. of the 35th Inter.
Symp. on Comp. Arch. (2008)

25. Hartono, A., Norris, B., Sadayappan, P.: Annotation-based empirical performance
tuning using orio. In: IPDPS ’09: Proc. of the Inter. Symp. on Parallel&Distributed
Processing. (2009)

26. Ribler, R., Vetter, J., Simitci, H., Reed, D.: Autopilot: adaptive control of dis-
tributed applications. In: High Performance Distributed Computing. (Jul 1998)

27. Hollingsworth, J., Keleher, P.: Prediction and adaptation in active harmony. In:
High Performance Distributed Computing, 1998. Proceedings. The Seventh Inter-
national Symposium on. (Jul 1998) 180–188

- 32 -

Automated Timer Generation for Empirical

Tuning ⋆

Josh Magee Qing Yi R. Clint Whaley

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX
{jmagee,qingyi,whaley}@cs.utsa.edu

Abstract. This paper presents a framework that significantly reduces
the time required for automatically applying empirical tuning to improve
the performance of large scientific applications, where the overall perfor-
mance is often critically determined by a small number of individual
routines that are either repetitively invoked or include a large number
of loop iterations. Our framework allows these critical routines to be
evaluated separately from their original applications by automatically
generating timing drivers that accurately replicate their execution envi-
ronment from within the whole applications. We have explored several
alternatives to precisely simulate the input parameters, cache states of
machines, and working environment of critical routines from both AT-
LAS and SPEC2006. Our experiments show that our timing drivers can
accurately replicate the performance of these routines when invoked di-
rectly within whole applications, while reducing the time required to
tune these routines by multiple orders of magnitude.

1 Introduction

In recent years, empirical tuning [9, 2, 4, 18, 19, 8, 11] has become a de facto ap-
proach that both developers and optimizing compilers adopt to extract high
performance for scientific applications on a wide variety of modern computing
platforms. However, since auto-tuning typically requires differently optimized
code to be recompiled and re-executed hundreds or even thousands of times,
the cost of experimentally evaluating a large optimization space could be pro-
hibitive, especially for large scientific applications that take minutes or even
hours to complete each run. In particular, for one of the SPEC2006 applica-
tions, we have found the time required to run the entire application is more
than 175, 000 times longer than evaluating the routine of interest independently.
It is therefore critically important to reduce the cost of each empirical evalua-
tion of the optimized code, so that a sufficiently large optimization space can be
explored to identify the desirable optimization configurations.

⋆ This research is supported by the National Science Foundation under grant No.
CCF-0833203, CCF-0747357, and CNS-0551504.

- 33 -

POET Timer

Generator

Routine spec+

output config

Empirical

tuning system

Native

compiler

Timing driver

Routine implementation

Hardware

machine

Timer executablePerformance feedback

Hardware

machine
DeveloperProfile

resultProfile library

Application+

Fig. 1: The Timer Generation Framework.

We present a framework that significantly reduces the time required to empir-
ically evaluate the performance of differently optimized code. Our framework is
based on the observation that large scientific applications often critically depend
on a few computationally intensive routines that are either invoked numerous
times by the application and/or include a significant number of loop iterations.
Since these routines are often chosen as the target of empirical performance
tuning, the tuning time can be greatly reduced by separately studying the per-
formance of an individual routine independent of the original application. Our
experimental results show multiple orders of magnitude speedup in execution
time when collecting performance feedback of a routine using an independent
timing driver instead of instrumenting the whole application.

Separately studying the performance of individual routines requires a tim-
ing driver that 1)invokes the routine with an appropriate execution environ-
ment and 2)accurately reports the performance of each invocation. Whaley and
Castaldo [17] showed that the measured performance could be seriously skewed
when the runtime state of the system, especially caches, is not properly con-
trolled by the timer before calling the routine. Unless the measured performance
of the routine accurately reflects its expected performance when invoked directly
within the whole application, the feedback could mislead the auto-tuning system
into producing sub-optimal code.

Our framework automatically generates independent timing drivers that em-
ploy several approaches to precisely simulate the input parameters, cache states
of machines, and working environment of individual routines so that their per-
formance accurately matches those observed when instrumenting the original
application. In particular, after identifying an individual routine to be tuned
from within a large application, the work flow of our framework is shown in Fig-
ure 1. The framework starts with an instrumentation library which is invoked in a
profiling run of the whole application to collect details of the routine’s execution
environment. The profiling result is then used to produce a routine specification,
which is then used as input to a POET (Parameterized Optimizations for Em-
pirical Tuning) [20] code generator to automatically produce a timing driver.
The timing driver can then be compiled and repetitively used in the iterative
performance tuning process, where every time a differently optimized code is
generated for the routine, the routine implementation is compiled and linked
with the timing driver to produce an executable (i.e., the timer), which mea-
sures the performance of the routine implementation on the targeted machine
and reports performance back to the tuning system.

- 34 -

Our framework currently requires manual user intervention to profile the
application and to write the routine specification after profiling. However, it
provides a complete instrumentation library to collect the routine’s execution
environment (i.e., all the information required to write a routine specification)
and provides a general-purpose code generator to automatically produce a re-
configurable implementation of the timing driver. Additionally, our framework
provides a library that uses automatic application checkpointing[5] to control the
execution environment of routines that are data-sensitive (e.g., an array sorting
algorithm or a pointing chasing algorithm). We show that by checkpointing sev-
eral instructions or iterations before invoking the routine of interest, the accuracy
of timing results can be greatly improved.

We have applied our framework to tune several routines from ATLAS and
SPEC2006. Our experiments show that our framework can accurately replicate
the performance of these routines when invoked directly within whole applica-
tions, while significantly reducing the time required to tune these routines.

2 Related Work

Whaley and Castaldo [17] explored methods for achieving accurate and context-
sensitive timing for code optimization. We have automated the generation of
context-sensitive timers and have investigated both the efficiency and effective-
ness of such timers in replicating the expected performance of routines invoked
within applications. Apart from [17], the literature dedicated to accurately mea-
suring performance has been limited to benchmarking systems [6, 13, 22].

The automatically generated timers presented in this paper can be inte-
grated within a large body of existing auto-tuning frameworks, including many
general-purpose iterative compilation frameworks [9, 1, 3, 11, 14, 19], and a large
number of domain-specific tuning systems, e.g., ATLAS [18, 17], SPIRAL [10,
8], FFTW [4], PHiPAC [2], OSKI [15], and X-Ray [22], to provide performance
feedback for the routines being optimized. The timers employed in ATLAS [16]
are used in our research as a baseline for comparison.

When used to measure performance, most profiling systems, such as HPC-
Toolkit [7], need to evaluate the entire application even when the performance of
only a single routine is required. In contrast, our framework supports the timing
of routines independent of their original applications. We use profiling only to
collect the execution environment of routines.

Our application checkpointing approach (see Section 3.2) follows that docu-
mented in the ROSE compiler [12]. We have additionally introduced a delayed
checkpointing approach that increases the accuracy of obtained timings.

3 Profiling Performance of Applications

The challenge faced when timing routines independently of their applications
is ensuring that appropriate input values and operand workspaces are provided
when invoking the routine. In particular, the supplied values should not result

- 35 -

in abnormal execution (e.g., exceptions, segmentation faults) and should reflect
the common usage pattern of the routine.

We have developed an instrumentation library to collect information on the
common usage patterns (as well as the performance) of routines when invoked
within an application. We separate these routines into two rough categories. The
first category of routines is data insensitive; that is, the amount of computation
within the routine is determined by a few integer parameters controlling problem
size, but is not noticeably affected by the particular values stored in the input
data structures. An example of such routines is dense matrix multiplication.
The second category includes routines that are much more data sensitive, e.g., a
sorting algorithm whose performance is largely determined by the specific data
values being operated upon, as the algorithm may exit immediately after finding
out the data are already sorted. Other examples include complex pointer-chasing
algorithms whose input can only be roughly approximated.

Based on whether the routine of interest is data sensitive, we use different ap-
proaches to simulate its execution environment. In particular, for data-insensitive
routines (e.g., matrix multiply), our default timer recreates their performance
by reproducing the same array sizes, initializing arrays using a random num-
ber generator, and carefully controlling the memory hierarchy state to match
those used in the whole applications. For data sensitive routines (e.g., a pointer-
chasing algorithm), we use a checkpointing approach, discussed in Section 3.2.
Note that the default timing approach may still allow reasonable tuning of some
data-sensitive routines, as illustrated by our experimental results in Section 5.

3.1 The Default Timing approach

1: n← number of routines
2: r ← list of routines to instrument
3: p← maximum number of parameters × sizeof(largest parameter type)
4: i← estimated calls to routine + sizeof(double precision floating point)
5: on application start, Setup instrumentation data buffer D[n× p× i]
6: for each routine i in r do

7: v ← parameter values of ri

8: time ri

9: t← wall clock time of ri

10: D ← key-value pair ri(v) : t, avoid polluting cache
11: end for

12: on application termination, Write contents of D to stdout or file

Fig. 2: Instrumentation Algorithm.

For data insensitive routines, we instrument their invocations within whole
applications to record the integer parameter values and the wall clock times
spent in evaluating each invocation. The collected information is then used to
determine what values to supply when independently tuning these routines. The
performance of routines collected within the applications is also used as reference
in section 5 to determine the accuracy of the performance reported by our auto-
generated timers.

Figure 2 presents the default approach to instrumenting the applications,
where a data buffer D is created at the start of the application. The data buffer
is of a configurable size, which is based upon the number of routines profiled,

- 36 -

the maximum number of sampled parameters, and the estimated number of calls
to each routine. Note that the maximum number of parameters include only
parameters that are of interest (in most cases integer type parameters). Once
setup is complete, every time a routine in r (the list of routines to instrument) is
invoked, the routine parameter values (v) and execution time of the routine (t)
are recorded. These values are written as a key-value pair to the data buffer (D)
using instructions that avoid cache pollution. Upon application termination, the
contents of data buffer D are written to a file or stdout.

3.2 The Checkpointing Approach

When invoked within whole applications, a data-sensitive routine sometimes has
complex data structures (e.g., linked lists, trees and graphs) which are almost
impossible to replicate without the original application. For these routines, we
have adopted the checkpointing approach, a technique most commonly associ-
ated with providing fault tolerance in systems, to precisely capture the memory
snapshot before the application invokes the routine. A similar checkpointing ap-
proach was first successfully employed in an end-to-end empirical optimization
system built using the ROSE compiler [12].

Checkpointing works by saving a “snapshot” image of a running application.
This image can be used to restart the application from a saved context. Our
framework utilizes the Berkeley Lab Checkpoint/Restart (BLCR) library [5]. It
facilitates checkpointing by providing a tiny library that can be used to generate
a context image of an application.

enter_checkpoint(CHECKPOINTING_IMAGE_NAME);
.....

starttime=GetWallTime();
retval = mainGtU(i1, i2, block, quadrant, nblock, budget);

endtime=GetWallTime();
.....
stop_checkpoint();

Fig. 3: Creating a contextualized snapshot of a routine.

Figure 3 demonstrates how a context image for a call to the routine mainGtU()
can be created using two calls: enter checkpoint and stop checkpoint. Specifically,
the created image includes all the data in memory before calling enter checkpoint
and all the instructions between enter checkpoint and stop checkpoint. The im-
age can be used in a specification file to our POET timer generator, discussed in
Section 4, to automatically generate a checkpoint driver. The driver then con-
tains code that loads and restarts the checkpoint image and reports the time
spent in evaluating the routine of interest. Note that while the intended usage
involves checkpointing a call to a routine, this approach can be used to measure
the performance of any critical region of code.

It is possible to call enter checkpoint immediately prior to the region of in-
terest. However, this is not the case in Figure 3. Since restoring a checkpoint
memory image does not restore any of the data into cache (and indeed may force
normally-cached data onto disk), it essentially destroys the cache state of the
original program. To restore the cache state before calling the routine of interest,

- 37 -

it is better to call enter checkpoint several loop iterations or instructions ahead
of the region of interest, so that execution of these instructions can help restore
the original cache state before the timed region is reached. How far in advance
to place the enter checkpoint call is a trade-off between reproduction accuracy
and sample time.

To calculate the amount of “delay” between the enter checkpoint call and
the region of interest, the distance between the checkpoint and the region is
incrementally increased until there is no noticeable variance in performance. In
detail, the enter checkpoint call is placed immediately prior to the region of in-
terest and a timing is obtained. Next the enter checkpoint call is placed in the
previous iteration (when the region is in a loop) or the previous function invo-
cation (when the region is not in a loop) and a new timing is obtained. The
process is applied iteratively until the variation between timings falls below a
chosen threshold. This process is semi-automated: once the boilerplate calls (en-
ter checkpoint and stop checkpoint) are in place the best “delay” can be selected.
We refer to placing the checkpoint immediately prior to the region of interest
as “immediate checkpointing” and to placing the checkpoint several instructions
prior to the region as “delayed checkpointing.”

4 Automatically Generating Timers

After profiling an application to collect information on the execution environ-
ment of individual routines, we express such information in the format of a
routine specification, which is then used by our POET timer generator (see Fig-
ure 1) to automatically produce a reconfigurable implementation (currently in
the C language) of the timing driver, so that performance of varying routine
implementations can be tuned independently of their original applications.

r ou t i n e=void ATL USERMM(const int M, const int N, const int K,
const double alpha , const double∗ A, const int lda ,
const double∗ B, const int ldb , const double beta ,
double∗ C, const int l d c) ;

i n i t={
M=Macro (MS, 7 2) ; N=Macro (NS , 7 2) ; K=Macro(KS, 7 2) ;
lda=MS; ldb=KS; l d c=MS; alpha=1; beta=1;
A=Matrix (double , M, K, RANDOM, f l u sh | a l i gn (1 6)) ;
B=Matrix (double , K, N, RANDOM, f l u sh | a l i gn (1 6)) ;
C=Matrix (double , M, N, RANDOM, f l u sh | a l i gn (1 6)) ;

} ;
f l o p=" 2* M*N*K+M*N" ;

Fig. 4: gemm.spec: Sample specification for the GEMM driver.

An example routine specification for a matrix multiplication kernel is shown
in Figure 4, which includes a routine declaration, a section to allocate, initialize,
and control the cache states of routine parameters, and a formula for comput-
ing the MFLOPS (millions of floating point operations per second). In particu-
lar, three integer parameters, M , N , and K, are initialized with environmental
macros whose values can be dynamically adapted by simply re-compiling the
timing driver; three matrices A, B, and C are allocated with appropriate sizes,
initialized with pseudo-randomly generated data, aligned to a 16 byte boundary,
and are flushed between timings.

- 38 -

Our timer generator in Figure 1 is essentially a translator written in POET [20],
an interpreted transformation language designed for building ad-hoc translators
between arbitrary languages (e.g. C/C++, Java) as well as applying sophisti-
cated transformations to programs in these languages. The POET translator
is extensively parametrized with variables whose values can be redefined via
command-line options. Therefore, a wide variety of timing driver implementa-
tions can be manufactured from a single routine specification by redefining values
of the command-line parameters, including the input/output file names, the out-
put language, cache size, Instruction Set Architecture, processor clock rate, and
timing methods (e.g., whether to use wall or CPU time).

A template of the auto-generated timing driver is shown in Figure 5 , which
can be instantiated with the concrete syntax of different programming languages
(our current work uses the C language) as well as different implementations (e.g.,
elapsed wall time, cycle-accurate wall time, or CPU cycles) to measure the per-
formance of the invoked routine. Note that some of the control-flow statements
(e.g., for-endfor and if-endif) in Figure 5 are not part of the generated code.
They are used by the POET timer generator to selectively (in the case of if-
endif) or repetitively (in the case of for-endfor) produce necessary statements
in the resulting driver.

Require: Routine definition R

for each routine parameter s in R do

ifs is a pointer or array variable then allocate memory ms for s endif

ifs needs to be initialized then initialize ms endif

end for

for each repetition of timing do

if Cache flushing = true then Flush Cache endif

times ← current time

call R
timee ← current time
timesr ← timee − times

end for

Calculate min, max, and average times from timesr

if flops is defined then

Calculate Max MFLOPS as flops × 1,000,000

min

Calculate Average MFLOPS as flops × 1,000,000

average

end if

Print All timings

Fig. 5: Template of auto-generated timing Driver.

The generated driver repetitively invokes the routine, optionally flushes the
cache for each invocation, and measures the elapsed time spent while invoking
the routine. Once all timing measurements are collected, the minimum, average,
and maximum timings are calculated and reported. If a formula to calculate the
number of floating point operations is included in the routine specification, the
maximum and average MFLOPS are also computed and reported. Further, if the
execution time of a single routine invocation is under clock resolution, multiple
invocations can be collectively measured to increase timing accuracy.

We adopt sophisticated cache flushing mechanisms as discussed in [17] in
our timing drivers. Specifically, the cache flushing strategy is re-configurable by
command-line and every strategy makes sure that the flushing does not stand
in the way of accurately measuring the performance of the routine being timed.

- 39 -

5 Experimental Evaluation

The goal of our evaluation is to validate that our POET-generated timers can
not only significantly reduce the tuning time for large applications, they can
accurately reproduce the performance of the timed routine when invoked within
whole applications. To achieve this goal, Section 5.2 shows the reduction in tun-
ing time achieved using our framework. Section 5.3 compares the timing results
using our auto-generated timer for a matrix multiplication kernel with those
obtained using the ATLAS timer, which is known to accurately reflect the com-
mon usage patterns of the kernel. Sections 5.4, 5.5, and 5.6 present performance
results for three routines selected from different SPEC2006 benchmarks.

Our results show that our timers can perform similarly to the ATLAS timer
in accurately reporting performance of data-insensitive routines in scientific com-
puting, and that the performance results reported by our timers closely repro-
duce those collected directly from within the SPEC2006 benchmarks.

5.1 Methodology

We performed our evaluation on two multicore platforms: a 3.0Ghz Dual-Core
AMD Opteron 2222 and a 3.0Ghz Quad-Core Intel Xeon Mac Pro. The timings
are obtained in serial mode using a single core of each machine.

To compare our auto-generated default timer (see Section 3.1) with the AT-
LAS timer, we selected five different implementations of the ATLAS Matrix
Multiply (referred to as MMK) kernel automatically generated using techniques
presented in [21], where each implementation differs only in the cache blocking
factor. The routine specification of this kernel is shown in Figure 4. The imple-
mentation of the kernel has been heavily optimized using techniques described
by Yi and Whaley in [21], and achieves roughly 80% of theoretical peak perfor-
mance when timed in cache (therefore, while this is not the fastest known kernel,
it is quite good).

Each timer is tested for the totally cold-cache state (all operands cache
flushed, labeled as Flush in figures) and with operands that have been allowed to
preload the levels of cache by an unguarded operand initialization immediately
prior to the timing call (labeled as No Flush in figures).

On the AMD platform, each MMK implementation is compiled using gcc

4.2.4 with optimization flags -fomit-frame-pointer -mfpmath=387 -O2

-falign-loops=4 -m64 (note we use the x87 rather than the vector unit be-
cause on 2nd generation Opterons, both units have the same double precision
theoretical peak, but the x87 unit has markedly decreased code size and increased
precision). On the Intel platform, each MMK implementations is compiled us-
ing gcc 4.0.1 with optimization flags -fomit-frame-pointer -mfpmath=sse

-msse3 -O2 -m64.
We selected the following routines from the SPEC2006 benchmark suite.

– Routine mult su3 mat vec, from 433.milc, performs an array-based matrix-
vector multiplication and is data-insensitive (i.e., the performance does not

- 40 -

depend on the content of the input arrays). We compare the performance
of the POET-generated default timer using randomly generated arrays with
timings obtained by profiling the whole application.

– Routine mainGtU, from 401.bzip2, is a variant of the quicksort algorithm us-
ing arrays. The computation depends on the content of the array being sorted
and thus is data-sensitive. We compare the performance results obtained by
the POET-generated default timer using randomly generated arrays, by the
POET-generated checkpoint timer, and by profiling the application.

– scan for patterns, from 445.gobmk, is an extremely data-sensitive routine
that operates on pointer-based linked-list data structures. We compare our
POET-generated checkpoint timer with timings obtained by profiling the
application.

Each SPEC2006 benchmark is compiled on both the AMD and the Intel
platforms using a variety of optimization flags, including -O0, -O1, -O2, -O3,

and -Os. All POET-generated timers themselves are compiled with the flag -O2.
When using POET-generated checkpoint timers, we present results using both
the immediate checkpointing and delayed checkpointing approaches (for details
of these approaches, see Section 3.2).

5.2 Cost comparison of timing mechanisms

Benchmark Delayed Checkpoint Immediate Checkpoint Default Timer

mult su3 mat vec 877,430ms 3,502ms 3,510ms 5ms
mainGtU 45,765ms 2,019ms 1,975ms 4ms
scan for patterns 90,460ms 6,218ms 5,930ms n/a

Table 1: Average runtimes for each SPEC2006 routine on AMD.

As shown in Table 1, the time required to collect performance feedback of a
routine can be drastically reduced by using an independent timing driver instead
of instrumenting the whole application. We see that our default timer is as
much as 175,486 times faster than running the full benchmark, while even our
delayed checkpoint timer is over 250 times faster. The timing results on the Intel
machine are similar. These reductions in execution time are critically important
for empirical tuning systems which may evaluate a routine hundreds or thousands
of times.

For data-sensitive routines such as mainGtU and scan for patterns, check-
pointing or running the full benchmark yields the most accurate results. How-
ever, these methods are also more expensive than the default timer approach.
The default timer takes significantly less time to run than the other approaches
and therefore should be used where possible. The checkpoint timers take signif-
icantly less time than running the entire benchmark and should be used when
the values of the input arrays are critical or when pointer-chasing routines are
involved.

5.3 Comparing with The ATLAS Timer

Figure 6 compares the timings reported by the ATLAS timer and POET default
timer with and without cache flushing for a MMK kernel using five different

- 41 -

ATL No Flush
POET No Flush
ATL Flush
POET Flush

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

nb62 nb64 nb68 nb70 nb72

M
F

LO
P

S

(a) ATLAS timer versus POET timer.

No Flush
Flush

 96

 98

 100

 102

 104

nb62 nb64 nb68 nb70 nb72

(P
O

E
T

 T
im

er
 /

A
T

L
T

im
er

)
*

10
0

(b) POET as a percentage of ATLAS timer

Fig. 6: ATLAS vs. POET timers with identical GEMM kernels on AMD.

cache blocking factors, where nb62 denotes a blocking factor of 62*62 for the
matrices. Figure 6(a) provides an overview of the timing results by comparing
the MFLOPS measured by the ATLAS and the POET timers respectively. For
each kernel implementation, the performance with cache flushing is slower than
without flushing and the performance reported by ATLAS and POET are ex-
tremely close. This is easier to see in Figure 6(b), which reports the POET timer
results as a percentage of the ATLAS timer results. For these kernel implemen-
tations, we see that the variation between the timers is less than 3%.

Timings taken on actual hardware running commodity OS are never precisely
repeatable in detail. Since our POET timer is implemented independently of
ATLAS, we expect some minor variance due to implementation details. The
question is whether these relatively minor variances in timing represent errors,
or if they are instead caused by the nature of empirical timings in the real world.

90

95

100

105

110

 0 50 100 150 200

(P
O

E
T

 T
im

er
 /

A
T

L
T

im
er

)*
10

0

Repeated POET time / ATL time

200 iterations of GEMM kernel with blocking factor 62

No Flush
Flush

(a) ATLAS timer versus POET timer.

90

95

100

105

110

 0 50 100 150 200

A
T

LA
S

 T
im

er
 /

A
T

LA
S

 T
im

er

Repeated ATL time / ATL time

200 iterations of GEMM kernel with blocking factor 62

No Flush
Flush

(b) ATLAS timer versus ATLAS timer.

Fig. 7: Variance on a given kernel implementation between an initial ATLAS timing
step with 200 subsequent results reported by POET or ATLAS timers on AMD.

Figure 7 sheds some light on this question: this figure shows the variation
between timing runs for a single kernel implementation (with a predetermined
blocking factor of 62), which we have timed 200 times. In Figure 7(a), we first
run the ATLAS timer once for each cache state (+: no cache flushed, x: with
cache flushing). We then time the same kernel 200 times using the POET default
timer. For each cache state, we plot the POET timer’s reported performance as
a percentage of the original ATLAS measurement. We see some obvious jitter in

- 42 -

the results, with variances that are mostly contained within a similar 3% range
as we saw in Figure 6.

Figure 7(b) provides a strong indication that most of the observed variance
is indeed due to the nature of empirical timings on actual machines. Here (using
the same initial ATLAS timing as we compared against in Figure 7(a)), we do
200 more timings using the ATLAS timer itself. When we compare Figures 7 (a)
and (b), we see that the variance between POET and ATLAS is only slightly
greater than the variance between ATLAS and itself. Therefore, we conclude that
our generated timer is able to adequately reproduce the behavior of ATLAS’s
hand-crafted timer for these hot and cold cache states.

5.4 Timing Results For SPEC2006 Routine mult su3 mat vec

This is a matrix-vector multiplication routine and is timed 1000 times using the
POET-generated default timer (with arrays initialized with random values) both
with and without cache flushing. The goal of this experiment is to verify that the
default timers accurately replicates the measured performance from within the
benchmark. Specifically, we expect that the default timer without cache flushing
will accurately reproduce the benchmark’s performance, since this routine is
called with its operands in cache for all invocations except the initial call.

1

10

100

1000

10000

 0 100 200 300 400 500

N
an

os
ec

on
ds

Routine Call

500 Calls to routine using -O1

No Flush
Flush

Benchmark

(a) Compiled with -O1 on AMD.

1

10

100

1000

10000

 0 100 200 300 400 500

N
an

os
ec

on
ds

Routine Call

500 Calls to routine using -O2

No Flush
Flush

Benchmark

(b) Compiled with -O2 on Intel.

Fig. 8: Timings of 500 consecutive calls to mult su3 mat vec.

Figure 8 confirms our expectation by showing performance results of the
routine when measured using the POET default timers (with and without cache
flushing) and when measured from within the benchmark. As shown in Fig-
ure 8(a) and Figure 8(b), the default timings without flushing match extremely
closely to the calls timed from within the benchmark, except when the routine
is called the first couple of times (demonstrated by a lone aberrant ∗ along the
0th call), and a spike just past the 200th call of routine from within the applica-
tion in (a). The spike is apparently due to unrelated activity affecting our wall
times (this spike either disappears or shows up in other places if the timing is
repeated). Therefore, we can classify this benchmark as using the kernel with
warm caches (except the first few calls).

Since the routine uses statically initialized arrays, the input data are not in
the cache on the first call, whose performance matches our flush timing results.

- 43 -

Min
Avg

 −20

 −15

 −10

 −5

 0

 5

 10

 15

 20

O0 O1 O2 O3 Os(P
O

E
T

 N
o

F
lu

sh
 /

B
en

ch
 L

at
e)

*1
00

(a) No Flush / Late Group.

Min
Avg

 0

 20

 40

 60

 80

 100

O0 O1 O2 O3 Os

(P
O

E
T

 F
lu

sh
 /

B
en

ch
 E

ar
ly

)*
10

0

(b) Flush / Early Group.

Fig. 9: Minimum and Average timings of mult su3 vec on AMD.

However, after calling the routine several times with the same workspace, the
operands become cache contained, and so the overwhelming majority of calls
closely match our no flush timings. On a cache with LRU cache line replacement,
the second call would already have brought the data into any cache large enough
to contain it. The machines we are using, however, have non-LRU replacement
L2 caches, and this means that several passes over a piece of data are required
before it is almost completely retained in the cache. Therefore, what we see is
that the first call essentially runs at flush speed, and then the time for the next
few calls decreases monotonically until the no flush time is reached. In such
cases, it can be helpful to sort the usage contexts into several important groups,
and tune them separately.

In Figure 9 we have sorted the first four routine calls into the early group,
and all remaining calls into the late group. We see in Figure 9(a) that for
both minimum and average times1 that the no flush times are an extremely
close match for the late group (verifying the general trend of Figure 8(a)). In
Figure 9(b), we see that the flush group is not an exact match for our early

group, which averages the first 4 calls, where only the first is fully out-of-cache.
However, even this rough grouping would be adequate to tune this kernel for
both contexts, assuming they were both important enough.

Our POET-generated timers can obviously capture the performance of rou-
tines when invoked either in-cache or fully out-of-cache, but for some applications
the data may be only partially cache-contained. We can simulate these cases by
partially flushing the cache in the default timer. Figure 10 demonstrates the
ability of the default timers to capture the variation that arises as a result of
the cache state. The default timers can reproduce a range of timings between
the non-flushed and completely flushed state by using different flush sizes. This
figure shows a progression of flushing sizes (from 512K to 2048K) in addition
to no-flushing and complete flushing. Tracing through each flushing size (from
none to full), a monotonic increase in the wall clock time can be observed such
that an increase in the size of the flush results in an increase of time.

1 maximum wall clock time can be extremely unstable and is therefore not used.

- 44 -

10

100

1000

10000

100000

 0 100 200 300 400 500

N
an

os
ec

on
ds

Routine Call

500 Calls to POET timer with increasing flush sizes

No Flush
Flush 512K
Flush 850K
Flush 896K

Flush 1024K
Flush 2048K

Full Flush

Fig. 10: POET Timers w/ increasing flush.

We can use the POET-generated
default timers to reproduce timings
that lie anywhere in between the flush

and no flush lines. If the cache state
of the application during a typical rou-
tine call is unknown (the usual case),
profiling can be used to capture where
the results lie, and the flush size can
be adjusted so that the timer roughly
reproduces the required cache state.

5.5 Timing Results For

SPEC2006 Routine mainGtU

The routine mainGtU is a sorting algorithm whose performance is sensitive to
the content of the input array. We have used both the POET-generated default
timer and the POET-generated checkpoint timer to independently measure per-
formance of this routine. The goal of this experiment is to determine how closely
both the default timer and the checkpoint timer can reproduce the timings ob-
tained from instrumenting the benchmark.

1

10

100

1000

10000

100000

 0 200 400 600 800 1000

N
an

os
ec

on
ds

Routine Call

1000 Calls to routine using -O1

No Flush
Flush

Benchmark

(a) POET timings.

1

10

100

1000

10000

100000

1e+06

1e+07

 0 200 400 600 800 1000

N
an

os
ec

on
ds

Routine Call

1000 Calls to routine using -O1

Benchmark
Checkpointing (Delayed)

Checkpointing (Immediate)

(b) Checkpointing timings.

Fig. 11: 1000 consecutive calls to mainGtU on AMD.

Figure 11(a) compares timings generated using the default timer with those
taken from profiling the entire benchmark. Since the default timer uses ran-
domly generated data, it will not capture cases where the data is in a particular
order (eg., near sorted). Given these factors it is not expected that the POET-
generated default timer should identically replicate each individual call; indeed
unless the data distribution and order can be characterized, random data is
probably as accurate as anything short of using the application’s actual input.

If the precise behaviour of individual calls needs to be replicated, then check-
pointing can yield accurate timings by exactly duplicating the input data. Fig-
ure 11(b)compares the results for both immediate (denoted by *) and delayed (x)
checkpointing to those obtained from profiling the benchmark (+). Immediate
checkpointing creates a checkpoint image of exactly one routine call. Delayed
checkpointing creates a checkpoint image of several calls (three calls for this
timing) to the routine, of which only the last call is timed. The methodology

- 45 -

to determine how much to “delay” is discussed in section 3.2. Immediate check-
pointing results in a cold memory hierarchy, and we see that these numbers are
therefore even slower than our flush results from Figure 11(a). Delayed check-
pointing allows for bringing the working set into the cache, thereby allowing
for an extremely accurate reproduction of the timings taken from within the
benchmark.

5.6 Timing Results For SPEC2006 Routine scan for patterns

1

10

100

1000

10000

100000

1e+06

 0 100 200 300 400 500
N

an
os

ec
on

ds

Routine Call

500 Calls to routine using -O2

Benchmark
Checkpointing (Delayed)

Checkpointing (Immediate)

Fig. 12: scan for patterns on AMD.

The routine scan for patterns is a
data-sensitive pattern matching al-
gorithm that processes pointer-based
linked-lists. Faithfully reproducing the
necessary contexts for such a pointer-
chasing algorithm is extremely diffi-
cult and often not feasible. To sup-
port the tuning of routines such as
scan for patterns we use the POET-
generated checkpoint timer. Here, the
goal of our experiment is to demon-
strate that the performance of complex pointer-chasing routines can be accu-
rately replicated using the checkpoint timer.

Figure 12 compares the result of delayed and immediate checkpointing with
timings obtained by profiling the benchmark. We can see that delayed check-
pointing (designated by x) closely replicates the benchmark profiled timings (+)
while immediate checkpointing follows the general trend of the benchmark (i.e.,
calls 200-300 are faster than 400-500) but with increased times due to the cold-
cache state as discussed in Section 3.2.

6 Conclusion

This paper presented a general-purpose framework for automatically generat-
ing timing drivers that can accurately report the performance of computational
routines in the context of automatic performance tuning. We have explored a
variety of ways to accurately reproduce the common usage patterns of a rou-
tine so that when independently timing the routine, the reported performance
results accurately reflect the expected performance of the routine when invoked
directly within applications. We have demonstrated the importance of check-
pointing several instructions or iterations before the routine being measured
(delayed checkpointing) in obtaining accurate timings. Finally, we have shown
that using the auto-generated timers can significantly reduce tuning time with-
out compromising tuning accuracy.

- 46 -

References

1. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. O’Boyle, J. Thomson, M. Toussaint,
and C. Williams. Using machine learning to focus iterative optimization. In International
Symposium on Code Generation and Optimization, 2006. (CGO 2006)., New York, NY, 2006.

2. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using phipac:
a portable, high-performance, ansi c coding methodology. In ICS ’97: Proceedings of the 11th
international conference on Supercomputing, pages 340–347, New York, NY, USA, 1997. ACM
Press.

3. C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search to optimize
for multiple levels of the memory hierarchy. In CGO, San Jose, CA, USA, March 2005.

4. M. Frigo and S. Johnson. FFTW: An Adaptive Software Architecture for the FFT. In Proceed-
ings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
volume 3, page 1381, 1998.

5. Future Technologies Group. Berkeley lab checkpoint/restart (blcr), 2009.
https://ftg.lbl.gov/CheckpointRestart.

6. L. McVoy and C. Staelin. lmbench: portable tools for performance. In Proceedings of the
Annual Technical Conference on USENIX 1996 Annual Technical Conference, pages 35–44,
Berkeley, California, 1996. USENIX Association.

7. J. Mellor-Crummey, R. Fowler, G. Marin, and N. Tallent. HPCView: A tool for top-down
analysis of node performance. The Journal of Supercomputing, 2002. In press. Special Issue
with selected papers from the Los Alamos Computer Science Institute Symposium.

8. J. Moura, J. Johnson, R. Johnson, D. Padua, M. Puschel, and M. Veloso. Spiral: Automatic
implementation of signal processing algorithms. In Proceedings of the Conference on High-
Performance Embedded Computing, MIT Lincoln Laboratories, Boston, MA, 2000.

9. Z. Pan and R. Eigenmann. Fast automatic procedure-level performance tuning. In Proc. Parallel
Architectures and Compilation Techniques, 2006.

10. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE, special issue on Program
Generation, Optimization, and Adaptation, 93(2), 2005.

11. A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole applications using
direct search and a performance-based transformation system. In Proceedings of the Los Alamos
Computer Science Institute Second Annual Symposium, Santa Fe, NM, Oct. 2004.

12. ROSE Team. Rose-based end-to-end empirical tuning: Draft user tutorial (associate with rose
version 0.9.4a), 2009. www.rosecompiler.org.

13. A. Saavedra and R. Smith. Measuring cache and tlb performance and their effect on benchmark
runtimes. IEEE Transactions on Computers, 44(10):1223–1235, Oct 1995.

14. M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classification.
In CGO, San Jose, CA, USA, March 2005.

15. R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automatically tuned sparse
matrix kernels. In Proceedings of SciDAC, San Francisco, California, 2005. Institute of Physics
Publishing.

16. C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Proceedings of
SC’98: High Performance Networking and Computing, Orlando, FL, Nov. 1998.

17. R. C. Whaley and A. M. Castaldo. Achieving accurate and context-sensitive timing for code
optimization. Software—Practice and Experience, 38(15):1621–1642, 2008.

18. R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software and
the ATLAS project. Parallel Computing, 27(1):3–25, 2001.

19. R. C. Whaley and D. B. Whalley. Tuning high performance kernels through empirical compi-
lation. In 34th International Conference on Parallel Processing, pages 89–98, Oslo, Norway,
2005. IEEE Computer Society.

20. Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet: Parameterized optimizations for
empirical tuning. In Workshop on Performance Optimization for High-Level Languages and
Libraries, Long Beach, California, Mar 2007.

21. Q. Yi and C. Whaley. Automated transformation for performance-critical kernels. In ACM
SIGPLAN Symposium on Library-Centric Software Design, Montreal, Canada, Oct. 2007.

22. K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic measurement of hard-
ware parameters. In In Proceedings of the 2nd International Conference on Quantitative
Evaluation of SysTems, 2005.

- 47 -

Static Java Program Features for Intelligent
Squash Prediction

Jeremy Singer, Paraskevas Yiapanis, Adam Pocock, Mikel Lujan, Gavin
Brown, Nikolas Ioannou, and Marcelo Cintra

1 University of Manchester, UK
jsinger@cs.man.ac.uk

2 University of Edinburgh, UK

Abstract. The thread-level speculation paradigm parallelizes sequential
applications at run-time, via optimistic execution of potentially inde-
pendent threads. This enables unmodified sequential applications to ex-
ploit thread-level parallelism on modern multicore architectures. How-
ever a high frequency of data dependence violations between speculative
threads can severely degrade the performance of thread-level speculation.
Thus it is crucial to be able to schedule speculations to avoid excessive
data dependence violations. Previous work in this area relies mainly on
program profiling or simple heuristics to avoid thread squashes. In this
paper, we investigate the use of machine learning to construct squash
predictors based on static program features. On a set of standard Java
benchmarks, with leave-one-out cross-validation, our approach signifi-
cantly improves speculation performance for two benchmarks, but unfor-
tunately degrades it for another two, in relation to a spawn-everywhere
policy. We discuss how to advance research on squash prediction, directed
by machine learning.

1 Introduction

With the emergence of multi-core architectures, it is inevitable that parallel pro-
grams are favored as they are able to take advantage of the available computing
resource. However there is a huge amount of legacy sequential code. Additionally,
parallel programs are difficult to write as they require advanced programming
skills. Some state-of-the-art compilers can automatically parallelize sequential
code in order to run on a multi-core system. However such compilers conserva-
tively refuse to parallelize code where data dependencies are ambiguous. Thread-
Level Speculation (TLS) has received a lot of attention in recent years as a means
of facilitating aggressive auto-parallelization [1] [2] [3] [4] [5] [6] [7] [8]. TLS ne-
glects any ambiguities in terms of dependencies and proceeds in parallel with
future computation in a separate speculative state as if those dependencies were
absent. The results are then checked for correctness. If they are correct, the
speculative state can safely write its side effects back to memory (i.e. commit).
If the results are wrong, all speculative state is discarded and the computation
is re-executed serially. (i.e. squash).

A high number of squashes results in performance degradation as:

- 48 -

1. There is a relatively high overhead associated with thread-management (roll-
back and re-execute).

2. Squashed threads waste processor cycles that could usefully be allocated to
other non-violating parallel threads.

An optimal situation would be one that no cross-thread violation occurs and
therefore all speculative threads can commit their state. The spawning policy
(the speculation level) employed by a TLS system is an important factor here.
However spawning policy alone cannot guarantee the absence of data dependence
violations. Ideally we would like to have a mechanism that can detect conflicts
ahead-of-time and thus ultimately decide whether to spawn a thread or not.
In this paper we simulate method-level speculation or Speculative Method-level
Parallelism (SMLP) in order to collect data about speculative threads that com-
mit or squash. We then mine static characteristics of these Java methods using
Machine Learning in order to relate general method properties to TLS behavior.

The main contributions of this paper are:

– a description of static program characteristics that may provide useful fea-
tures for learning about Java methods (Section 3).

– a comparative evaluation of profile-based and learning-based policies for
squash prediction, in the context of method-level speculation for Java pro-
grams (Section 4).

– an outline of future directions for investigation into learning-based squash
prediction (Section 6).

2 Speculation Model

2.1 Speculative Method-Level Parallelism

Since the Java programming language is object-oriented, the natural unit of
abstract behavior is the method. Thus we assume that distinct methods are
likely to have independent behavior, so methods are suitable code segments for
scheduling as parallel threads of execution [9] [10] [11] [12].

Figure 1 presents a graphical overview of how SMLP operates, given a method
f that calls a method g. A speculative thread is spawned at the method call to g.
The original non-speculative thread continues to execute the body of g, without
any change in its speculative status. The new thread skips over the method call
and starts execution at the point where g returns to the continuation of f . This
new child thread is in a more speculative state than its parent spawner thread.

During the subsequent parallel execution of these two threads, if the parent
writes to a memory location that has been read by the child, then we have a data
dependence violation. The child speculation must be squashed, and the method
continuation re-executed. On the other hand, if the parent thread completes the
method call without causing any data dependence violations, then the spawnee
can be committed. This means that its speculative actions can be confirmed to
the whole system, and the spawnee is joined to the spawner. Execution resumes

- 49 -

f()
head
code

g()
code

f()
continuation
code

g()
code

f()
head
code

f()
continuation
code

call

return

call

return

spawn

join

execution tim
e

sequential
execution

speculative
execution

Fig. 1. Speculative execution model

from where the spawnee was at the join point, in the less speculative state of
the spawner.

The SMLP model permits in-order nested speculation, which means that
spawned threads can in turn spawn further threads at more speculative levels.
However if a spawner thread itself has to be squashed, all its spawned threads
must also be squashed.

Note that there are overheads for spawning new threads, committing spec-
ulative threads and squashing mis-speculations. Speculation must be carefully
controlled to avoid excessive mis-speculation and the corresponding performance
penalty. This motivates our interest in accurate squash prediction techniques.

In our architectural model, we make two idealized assumptions:
Write buffering: A speculative thread keeps its memory write actions pri-

vate until the speculation is committed. This requires buffering of speculative
state until the commit event. We assume buffers have infinite size. Return
value prediction: If a method continuation (executing as a speculative thread)
depends on the value of a method call (executing concurrently as a less spec-
ulative thread), then we assume that the return value may be predicted with
perfect accuracy.

2.2 Benchmarks

This investigation uses Java applications from the SpecJVM98 [13] and DaCapo
[14] benchmark suites, which are widely used in the research domain. Programs
from different suites and genres are helpful to assess how our predictions general-

- 50 -

ize, for previously unseen data. An overview of the selected benchmarks is shown
in Figure 2. We use s1 inputs for SpecJVM98 and small inputs for DaCapo.

benchmark description

202 jess AI problem solver
205 raytrace raytracing graphics

213 javac Java compiler
222 mpegaudio audio decoding

228 jack parser generator
antlr parser generator
fop PDF graphics renderer

pmd Java bytecode analyser

Fig. 2. Benchmarks.

2.3 Trace-driven Simulation

All speculative execution is simulated using trace-driven simulation. Each se-
quential, single-threaded Java benchmark application executes with Jikes RVM
v2.9.3 [15] in the Simics v3.0.31 full-system simulation environment [16]. Sim-
ics is configured for IA-32 Linux, using the supplied tango machine description,
with a perfect memory model. The Jikes RVM compiler is instrumented to en-
able call-backs into Simics to record significant runtime events. These include
method entry and exit, heap read and write, exception throw, etc. Each event is
recorded with appropriate metadata, such as method identifier, memory address,
and processor cycle count.

Thus we produce a sequential execution trace of events that may affect spec-
ulative execution. We feed the trace file to a custom TLS simulator. It uses
method call information to drive speculative thread spawns, and heap memory
access information to drive thread squashes based on data dependence viola-
tions. The timing information in the sequential trace enables the TLS simulator
to determine method runlengths, in order to estimate an execution time based
on parallel execution once it has determined which spawned threads commit or
squash.

For the sake of simplicity, the TLS simulator only has two processors. Only
two methods can execute in parallel. Methods are considered as candidates for
spawning if their total sequential runlength is between 1000 and 10,000 cycles.
If both available cores are occupied, then new speculations cannot be scheduled,
i.e. the speculation is in-order. We impose a small, fixed 10 cycle overhead for
each TLS spawn, squash and commit event during program execution.

All performance improvements in our simulated TLS system are due to ex-
ecution time overlap. We do not model any secondary effects due to warming
up caches and other architectural units. Other researchers quantify the benefit

- 51 -

of this helper-thread effect of speculative execution, and find it to be a large
component of the overall performance improvement [5] [17].

3 Intelligent Squash Prediction in TLS

3.1 Squash Prediction

Once we have fixed our TLS model so that spawns are only allowed to occur
at method calls, the next task is to determine which potential spawn points
we should ignore. Obviously we could spawn a new speculative thread at each
method call; however many of these spawns will not lead to performance gain,
either because the spawned method is too short for the parallelism to outweigh
the overhead of thread creation, or because the spawned thread is guaranteed to
cause a data dependence violation resulting in a squash.

It is sometimes possible to eliminate certain useless spawn points via static
analysis. Other spawns are eliminated as a result of dynamic profiling that stud-
ies their behavior over a program run. In general, proposed TLS systems employ
either or both of these techniques to eliminate poor spawn points. We aim to
create a hybrid scheme, that can generate advice about spawn points based on
features of program code (like static analysis) given prior knowledge of runtime
behavior of that same, or similar, code (like dynamic analysis).

The relationship between static code features and dynamic squashing be-
havior is constructed using machine learning algorithms. Thus we are able to
create general squash predictors that can provide advice for any code, whether
previously seen or unseen. This is a key strength of learning-based techniques,
which has not been exploited previously in the TLS domain.

Note that use of learning-based predictors does not prevent further runtime
profiling to fine-tune spawn point advice dynamically. At present, we envisage
offline learning for ahead-of-time predictions, as a drop-in replacement for static
spawn point elimination. Previously such static elimination was based on ad-
hoc compiler heuristics, whereas now we are proposing to apply well-understood
learning techniques to enable more intelligent squash prediction.

3.2 Feature Collection

This study focuses entirely on static features, i.e. information about a program
that can be gained from an inspection of its source or object code, without ac-
tually executing the program. We characterize each Java method by 45 features.
22 features are fundamental nano-patterns, described in [18] and [19]. These are
binary properties of Java methods that can be easily extracted by trivial static
analysis of the bytecode. The patterns denote a summary of the behavior and
characteristics a method exhibits (such as array accesses and method calling
relationships). Figure 3 outlines the patterns we collect.

We collect a further 23 integer-valued characteristics for each method, derived
from the MILEPOST feature set [20]. These measurements are taken on the

- 52 -

Feature Meaning

NoParams (N) takes no arguments

NoReturn (V) returns void

Recursive (R) calls itself recursively

SameName (S) calls another method with the same name

AbstractCaller (A) issues calls via abstract methods

Leaf (L) does not issue any method calls

ObjectCreator (OC) creates new objects

ThisInstanceFieldReader (TFR) reads field values from this object

ThisInstanceFieldWriter (TFW) writes values to field of this object

OtherInstanceFieldReader (IFR) reads field values from some object

OtherInstanceFieldWriter (IFW) writes values to field of some object

StaticFieldReader (SFR) reads static field values from a class

StaticFieldWriter (SFW) writes values to static field of a class

TypeManipulator (TM) uses type casts or instanceof operations

StraightLine (SL) no branches in method body

Looping (LO) one or more control flow loops in method body

Exceptions (E) may throw an unhandled exception

LocalReader (LR) reads values of local variables on stack frame

LocalWriter (LW) writes values of local variables on stack frame

ArrayCreator (AC) creates a new array

ArrayReader (AR) reads values from an array

ArrayWriter (AW) writes values to an array

Fig. 3. Java method-level features, based on fundamental nano-patterns

compiler intermediate form (in our case, Jikes RVM HIR code). They relate to
the size and shape of the control flow graph, and the mixture of instruction
kinds. Figure 4 outlines these features.

3.3 Learning Problem

We treat each method call in a dynamic execution trace as a potential TLS spawn
point. At each spawn, two methods are involved: the caller and the callee. We
characterize the spawn by a vector of 90 features: 45 from each method involved.
The class to predict is a binary summary of the outcome of this speculation:
commit or squash. We employ supervised learning, which means that we have a
set of labeled samples to create the classification model. We use the C5.0 [21]
algorithm to construct a rules-based classifier.

4 Evaluation

We use leave-one-out cross-validation (LOOCV) to evaluate our squash predic-
tion classifiers. When we want to evaluate the squash predictor for benchmark
b, we gather training data from the other benchmarks (excluding b) to generate

- 53 -

Feature Meaning

bbNum Number of basic blocks

bbOneSuc Number of basic blocks with one successor

bbTwoSuc Number of basic blocks with two successors

bbMtTwoSuc Number of basic blocks with more than two successors

bbOnePred Number of basic blocks with a single predecessor

bbTwoPred Number of basic blocks with two predecessors

bbMtTwoPred Number of basic blocks with more than two predecessors

bbOnePredOneSuc Number of basic blocks with a single predecessor and a single successor

bbOnePredTwoSuc Number of basic blocks with a single predecessor and two successors

bbTwoPredOneSuc Number of basic blocks with two predecessors and a single successor

bbTwoPredTwoSuc Number of basic blocks with two predecessors and two successors

bbMtTwoPredMtTwoSuc Number of basic blocks with more than two predecessors and more than two successors

bbInstrLt15 Number of basic blocks with number of instructions less than 15

bbInstr15and500 Number of basic blocks with number of instructions in the interval [15,500]

bbInstrMt500 Number of basic blocks with number of instructions greater than 500

directCallNum Number of direct calls in the method

cndBrnchNum Number of conditional branches in the method

uncndBrnchNum Number of unconditional branches in the method

methodInstrNum Number of instructions in the method

bbInstrNum Average number of instructions in basic blocks

loadNum Number of memory load instructions in the method

storeNum Number of memory store instructions in the method

allocNum Number of memory-allocating instructions in the method

Fig. 4. Java method-level features obtained from the compiler intermediate form, based
on the MILEPOST feature set

the classifier, which will then be applied to b. In this way, we test the generality
of the squash prediction rules since they are always applied to previously unseen
data.

The C5.0 algorithm generates a set of rules for predicting squashes and com-
mits. Each rule has an associated confidence based on its accuracy in the training
set. We select rules that predict squashes with a confidence above 90%, to apply
in our testing rule set. Rules are incorporated directly into our TLS simulator
via C header files. At each method call in the simulated execution, the rules are
applied to check method properties and predict whether this potential spawn
would result in a squash. If no squash is predicted and a free core is available,
then the TLS spawn event occurs in the simulator. In an actual TLS system, such
static rules would probably be encoded as static hints at compile time. A small
amount of runtime support might be required for some dynamically dispatched
methods.

Figure 5 compares three squash prediction policies for method-level specula-
tion on a 2-core TLS system. For each benchmark, the left-most bar shows the
speedup (over sequential execution) for no squash prediction. The middle bar

- 54 -

shows the speedup for profile-based prediction, which involves determining the
overall proportion of squashes at each callsite in the program, during a profiling
run. Then during the test run, squashes are predicted for call sites that had
more than 90% squashes on the profiling run. This is not machine learning—it
is simple statistical analysis, training and testing on the same data. Finally, the
right bar shows the speedup with learning-based prediction, using the squash
prediction rules with at least 90% confidence, generated by C5.0 with LOOCV.

Note from Figure 5 that in the majority of cases, learning-based prediction
is almost as good as, or better than, profile-based. However, for 205 raytrace
and pmd, learning-based prediction is significantly worse. This may be because
these benchmarks are unlike the others, e.g. 205 raytrace is significantly smaller
than all the other execution traces. Perhaps a greater diversity in the training
set would result in more generally applicable squash prediction rules.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

_2
02

 je
ss

_2
05

_r
ay

tr
ac

e

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
28

_j
ac

k

an
tlr fo
p

pm
d

sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

nopredict
profile

rules

Fig. 5. TLS speedup for various squash prediction schemes

Figure 6 shows the frequencies of TLS spawn and squash events for each
benchmark, with each squash prediction policy. For each benchmark, there are
three bars: no prediction, profile-based squash prediction and rules-based squash
prediction. For each prediction policy, the lower solid bar gives the number of
squashes for a benchmark execution, and the upper shaded bar gives the number
of thread spawns for a benchmark execution.

The desired impact of squash prediction is to reduce the number of squashes,
thus eliminating wasted work. At the same time, the predictor must not have
a high false positive rate, since this would suppress genuinely data-independent
threads and decrease the parallel performance. Figure 6 shows that rules-based

- 55 -

squash prediction reduces the number of squash events in relation to no pre-
diction, in all cases. In the majority of cases, fewest squash events occur with
profile-based prediction.

The detrimental effect of a high false positive rate can be seen with the
pmd benchmark. The aggressive rules-based squash prediction suppresses many
thread spawns, so much so that the number of spawned threads is around 50%
of that for the other policies. This reduces the amount of available parallelism
in the program execution, this reducing the speedup over the sequential version.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

_2
02

 je
ss

_2
05

_r
ay

tr
ac

e

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
28

_j
ac

k

an
tlr fo
p

pm
d

T
LS

 e
ve

nt
 fr

eq
ue

nc
y

nopredict-spawns
nopredict-squashes

profile-spawns
profile-squashes

rules-spawns
rules-squashes

Fig. 6. Frequency of TLS thread spawn and squash events for each prediction policy,
(solid bars are squashes, shaded bars are spawns)

5 Related Work

Whaley [4] presents a set of seven heuristics for controlling spawns in SMLP ex-
ecution. His heuristics are manually generated from expert domain knowledge.
The heuristics require dynamic information such as method runlengths and pro-
file information. Thus programs require ahead-of-time profiling before heuristics
can be applied. Our machine-learning based approach has the advantage that
it can train on a set of programs, then be applied to a previously unseen pro-
gram. Whaley gives oracle predictor speedup figures of around 1.5 on a set of
Java benchmarks. His heuristics are able to achieve around 80% of this optimal
speedup.

The POSH TLS compiler [5] uses program structure (loops and method calls)
to identify potential spawn points. These spawn points are then refined by means

- 56 -

of runtime profiling to eliminate useless spawns. The authors report a mean
1.3 speedup on standard benchmarks. They attribute 26% of the speedup to
prefetching effects, which we do not consider.

Other researchers use similar profile feedback information to drive the com-
piler’s decisions on spawn point insertion [22, 10]. In contrast, Dou and Cintra
[23] present an entirely static cost model of TLS, which allows the compiler to
estimate speedups in loop-level speculation with fairly high accuracy, and thus
refine spawn insertions. They claim the framework gives a 25% speedup over
a naive ‘spawn everywhere’ approach. There are also entirely dynamic squash
prediction techniques. For instance, Cintra and Torrellas [24] present a hard-
ware lookup table approach that learns which data dependencies are likely to
cause thread squashes as the TLS program executes. Thus it is able to adapt
dynamically the spawning policy for threads that eliminate many squashes. Our
machine-learning based approach is currently intended as a static squash pre-
diction technique, although we are investigating using learning at runtime for
dynamic squash prediction.

Warg and Stenstrom [25] present another heuristic approach to improving
SMLP. They observe that short methods should not be parallelized since the
speculative overhead outweighs the benefit of parallel execution. They use a
dynamic runlength predictor to identify short methods, and suppress spawns at
these method calls. They use several different method runlength thresholds for
spawn suppression, varying between 0 and 500 cycles. We use a small TLS event
overhead of 10 cycles, which means the overhead is generally negligible in relation
to the speculative runlength. (Other researchers adopt 10 cycles as a realistic
cost - cites.) In fact, Warg and Stenstrom’s problem is largely orthogonal to the
squash prediction problem. We could apply similar learning techniques in both
cases.

6 Conclusions

This paper has investigated the use of static Java program features for TLS
squash prediction, using leave-one-out cross-validation to generate results for
previously unseen programs. On the whole, the performance generated from
rules-based squash prediction is not overly impressive. In several cases for our
benchmarks, it would be better to spawn everywhere, rather than use the squash
predictions. One possible inference is that our current set of static features may
not characterize the problem sufficiently to enable accurate predictions. Alterna-
tively, perhaps we have not selected enough programs to provide good coverage
in the training set for LOOCV.

There are numerous parameters to tune in our TLS simulator. For instance,
we have fixed overhead costs for squashes and thread sizes for consideration as
spawn candidates. Additionally, there are parameters in our machine learning
setup. We can vary the confidence threshold for selection of rules. We can select
rules for both commit and squash events, and vote between them in the event of a
disagreement. The irony is that our initial justification for machine learning was

- 57 -

to avoid manually generated heuristics. However now we are intending to tune
parameters for our customized learning algorithm, instead of for the underlying
TLS squash prediction problem.

In future work, we should consider loop-level speculation too. We may be able
to use features from existing machine learning studies on loop optimizations,
e.g. [26]. We may also progress to consider dynamic features, such as read- and
write-set sizes for speculative threads. This may tie in with the theme of online
learning, integrated into the runtime system with low-overhead profiling and
learning costs.

References

1. Dang, F., Yu, H., Rauchwerger, L.: The R-LRPD Test: Speculative Parallelization
of Partially Parallel Loops. In: Proceedings of the 16th International Parallel and
Distributed Processing Symposium. (2002) 20–29

2. Cintra, M., Llanos, D.: Toward Efficient and Robust Software Speculative Paral-
lelization on Multiprocessors. In: Proceedings of the 9th Symposium on Principles
and Practice of Parallel Programming. (2003) 13–24

3. Quiñones, C., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen, D.:
Mitosis Compiler: An Infrastructure for Speculative Threading Based on Pre-
Computation Slices. In: Proceedings in Conference on Programming Language
Design and Implementation. (2005) 269–279

4. Whaley, J., Kozyrakis, C.: Heuristics for Profile-Driven Method-Level Speculative
Parallelization. In: Proceedings of the 34th International Conference on Parallel
Processing. (2005) 147–156

5. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH:
A TLS compiler that exploits program structure. In: Proceedings of the 11th
Symposium on Principles and Practice of Parallel Programming. (2006) 158–167

6. Johnson, T., Eigenmann, R., Vijaykumar, T.: Speculative Thread Decomposi-
tion Through Empirical Optimization. In: Proceedings of the 12th Symposium on
Principles and Practice of Parallel Programming. (2007) 205–214

7. Luo, Y., Packirisamy, V., Hsu, W.C., Zhai, A., Mungre, N., Tarkas, A.: Dynamic
Performance Tuning for Speculative Threads. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture. (2009) 462–473

8. Wang, C., Wu, Y., Borin, E., Hu, S., Liu, W., Sager, D., fook Ngai, T., Fang, J.:
Dynamic Parallelization of Single-Threaded Binary Programs using Speculative
Slicing. In: Proceedings of the 23rd International Conference on Supercomputing.
(2009) 158–168

9. Hu, S., Bhargava, R., John, L.K.: The Role of Return Value Prediction in Exploit-
ing Speculative Method-Level Parallelism. Journal of Instruction-Level Parallelism
5 (2003) 1–21

10. Chen, M., Olukotun, K.: The Jrpm System for Dynamically Parallelizing Java Pro-
grams. In: Proceedings of the 30th Annual International Symposium on Computer
Architecture. (2003)

11. Warg, F., Stenström, P.: Limits on Speculative Module-level Parallelism in Imper-
ative and Object-oriented Programs on CMP Platforms. In: Proceedings of the
10th International Conference on Parallel Architectures and Compilation Tech-
niques. (2001) 221–230

- 58 -

12. Oplinger, J., Heine, D., Lam, M.: In Search of Speculative Thread-Level Paral-
lelism. In: Proceedings of the 1999 International Conference on Parallel Architec-
tures and Compilation Techniques. (1999) 303–313

13. : Spec jvm98 http://www.spec.org/jvm98.
14. Blackburn, S., Garner, R., Hoffmann, C., Khang, A., McKinley, K., Bentzur, R.,

Diwan, A., Feinberg, D., Frampton, D., Guyer, S., Hirzel, M., Hosking, A., Jump,
M., Lee, H., Moss, E., Moss, B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
VonDincklage, D., Wiedermann, B.: The DaCapo Bbenchmarks: Java Benchmark-
ing Development and Analysis. In: Proceedings of the 21st Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications. (2006) 169–
190

15. Alpern, B., Attanasio, C., Barton, J., Burke, M., Cheng, P., Choi, J., Cocchi, A.,
Fink, S., Grove, D., Hind, M., Hummel, S., Lieber, D., Litviniv, V., Mergen, M.,
Ngo, T., Russel, J., Sarkar, V., Serrano, M., Shepherd, J., Smith, A., Sreedhar, V.,
Srinivasan, H., Whaley, J.: The Jalapeño Virtual Machine. IBM Systems Journal
39(1) (2000) 211–238

16. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., H̊allberg, G., Högberg,
J., Larsson, F., Moestedt, A., Werner, B.: Simics: A Full System Simulation Plat-
form. IEEE Computer 35(2) (2002) 50–58

17. Xekalakis, P., Ioannou, N., Cintra, M.: Combining thread level speculation helper
threads and runahead execution. In: Proceedings of the 23rd International Con-
ference on Supercomputing. (2009) 410–420

18. Singer, J., Pocock, A., Brown, G., Luján, M., Yiapanis, P.: Fundamental Nano-
Patterns to Characterize and Classify Java Methods. In: Proceedings of the 9th
Workshop on Language Descriptions, Tools and Applications. (2009) 204–218

19. Høst, E., Østvold, B.: The Programmer’s Lexicon, Volume I: The Verbs. In:
Proceedings of the 7th International Working Conference on Source Code Analysis
and Manipulation. (2007) 193–202

20. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A.,
Mendelson, B., Barnard, P., Ashton, E., Courtois, E., Bodin, F., Bonilla, E., Thom-
son, J., Leather, H., Williams, C., O’Boyle, M.: MILEPOST GCC: machine learn-
ing based research compiler. In: Proceedings of the GCC Developers’ Summit.
(2008)

21. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc. (1993)

22. Wu, P., Kejariwal, A., Cascaval, C.: Compiler-Driven Dependence Profiling to
Guide Program Parallelization. In: Proceedings of Workshop on Languages and
Compilers for Parallel Computing. (2008) 232–248

23. Dou, J., Cintra, M.: A Compiler Cost Model for Speculative Parallelization. ACM
Transactions on Architecture and Code Optimization 4(2) (2007) 12

24. Cintra, M., Torrellas, J.: Eliminating Squashes Through Learning Cross-Thread
Violations in Speculative Parallelization for Multiprocessors. In: Proceedings of
the 8th International Symposium on High Performance Computer Architecture.
(2002) 43

25. Warg, F., Stenström, P.: Improving Speculative Thread-Level Parallelism Through
Module Run-Length Prediction. In: Proceedings of the 17th International Sympo-
sium on Parallel and Distributed Processing. (2003) 12.2

26. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic ap-
proach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping. In: Proceedings of the 2009 ACM SIGPLAN
conference on Programming language design and implementation. (2009) 177–187

- 59 -

Smartlocks: Self-Aware Synchronization through
Lock Acquisition Scheduling

Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant Agarwal

Massachusetts Institute of Technology
{eastep, wingated, santambr, agarwal}@mit.edu

Abstract. As multicore processors become increasingly prevalent, sys-
tem complexity is skyrocketing. The advent of the asymmetric multicore
compounds this – it is no longer practical for an average programmer to
balance the system constraints associated with today’s multicores and
worry about new problems like asymmetric partitioning and thread in-
terference. Adaptive, or self-aware, computing has been proposed as one
method to help application and system programmers confront this com-
plexity. These systems take some of the burden off of programmers by
monitoring themselves and optimizing or adapting to meet their goals.

This paper introduces an open-source self-aware synchronization li-
brary for multicores and asymmetric multicores called Smartlocks. Smart-
locks is a spin-lock library that adapts its internal implementation dur-
ing execution using heuristics and machine learning to optimize toward
a user-defined goal, which may relate to performance, power, or other
problem-specific criteria. Smartlocks builds upon adaptation techniques
from prior work like reactive locks [1], but introduces a novel form of
adaptation designed for asymmetric multicores that we term lock acqui-
sition scheduling. Lock acquisition scheduling is optimizing which waiter
will get the lock next for the best long-term effect when multiple threads
(or processes) are spinning for a lock.

Our results demonstrate empirically that lock scheduling is important
for asymmetric multicores and that Smartlocks significantly outperform
conventional and reactive locks for asymmetries like dynamic variations
in processor clock frequencies caused by thermal throttling events.

1 Introduction

As multicore processors become increasingly prevalent, system complexity is
skyrocketing. It is no longer practical for an average programmer to balance
all of the system constraints and produce an application or system service that
performs well on a variety of machines, in a variety of situations. The advent of
the asymmetric multicore is making things worse. Addressing the challenges of
applying multicore to new domains and environments like cloud computing has
proven difficult enough; programmers are not accustomed to reasoning about
partitioning and thread interference in the context of performance asymmetry.

One increasingly prevalent approach to complexity management is the use of
self-aware hardware and software. Self-aware systems take some of the burden off

- 60 -

time

Thread-1

Thread-3

Thread-2

Acquire CS

CS

Acquire

Acquire Release

Release

CS Release

Test and Set

Smartlock
Thread-1

Thread-3

Thread-2

Acquire CS

CS

Acquire

Acquire Release

Release

CS Release

Acquire CS Release

CSAcquire Release

4 CS exec4 CS exec

SPARE RESOURCES

SPARE RESOURCES

SPARE
RESOURCES

SPARE RESOURCES

SPARE RESOURCES

Fig. 1: The Impact of Lock Acquisition Scheduling on Asymmetric Multicores. Good
scheduling finishes 4 critical sections sooner and creates more spare execution resources.

of programmers by monitoring themselves and optimizing or adapting to meet
their goals. Interest in such systems has been increasingly recently. They have
been variously called adaptive, self-tuning, self-optimizing, autonomic, and or-
ganic systems, and they have been applied to a broad range of systems, including
embedded, real-time, desktop, server, and cloud systems.

This paper introduces an open-source1 self-aware synchronization library
for multicores and asymmetric multicores called Smartlocks. Smartlocks is a
spin-lock library that adapts its internal implementation during execution us-
ing heuristics and machine learning. Smartlocks optimizes toward a user-defined
goal (programmed using the Application Heartbeats framework [2]) which may
relate to performance, power, problem-specific criteria, or combinations thereof.

Smartlock takes a different approach to adaptation than its closest prede-
cessor, the reactive lock [1]. Reactive locks optimize performance by adapting
to scale, i.e. selecting which lock algorithm to use based on how much lock
contention there is. Smartlocks use this technique, but use an additional novel
adaptation – designed explicitly for asymmetric multicores – that we term lock
acquisition scheduling. When multiple threads or processes are spinning, lock
acquisition scheduling is the procedure for determining who should get the lock
next, to maximize long-term benefit.

One reason lock acquisition scheduling is an important power and perfor-
mance opportunity is because performance asymmetries make cycles lost to
spinning idly more expensive on faster cores. Figure 1 illustrates that, with
significant asymmetries, the effect can be very pronounced. Using spin-locks can
be broken up into three computation phases: acquiring the lock, executing the
critical section (CS), then releasing the lock. The figure shows two scenarios
where two slow threads and one fast thread contend for a spin-lock: the top uses
a Test and Set lock not optimized for asymmetry, and the bottom shows what
happens when Smartlocks is used. We assume that the memory system limits
acquire and release but that the critical section executes faster on the faster core.

1 The authors plan to release Smartlocks in January 2010.

- 61 -

In the top scenario, the lock naively picks the slower thread, causing the
faster thread to idle in the acquire stage. In the bottom scenario, the Smartlock
prioritizes the faster thread, minimizing its acquire time. The savings are put to
use executing a critical section, and the threads complete 4 total critical sections
sooner, giving a performance improvement. That improvement can be utilized
as a latency improvement when a task requires executing some fixed number of
critical sections, or it can be utilized as a throughput improvement (since the
faster thread is able to execute another critical section sooner and more critical
sections overall). The lock acquisition scheduler in the Smartlock scenario has the
advantage that it can also (simultaneously or alternatively) optimize the total
amount of spare execution cycles, which can be utilized for other computations
or for saving power by sleeping cores.

We empirically evaluate Smartlocks on a related scenario in Section 4. We
measure throughput for a benchmark based on a simple work-pool programming
model (without work stealing) running on an asymmetric multicore where core
clocks speeds vary due to two thermal throttling events. We compare Smartlocks
to conventional locks and reactive locks, and show that Smartlock significantly
outperforms other techniques, achieving near-optimal results.

The rest of this paper is organized as follows. Section 2 gives background
about the historical development of various lock techniques and compares Smart-
locks to related works. Section 3 describes the Smartlock implementation. Sec-
tion 4 details the benchmarks and experimental setup referenced above. Finally,
Section 5 concludes and identifies several additional domains in asymmetric mul-
ticore where Smartlock techniques may be applied.

2 Background and Related Work

This section begins with a basic description of spin-lock algorithms followed by
the historical development of various algorithms and the challenges they solved.
Then, this section compares Smartlocks to its most closely related works.

2.1 The anatomy of a Lock

Using spin-locks in applications can be thought of as executing a cycle of three
computation phases: acquiring the lock, executing the application’s critical sec-
tion (CS), then releasing the lock. Depending on the algorithms used in its ac-
quire and release phases, the spin-lock has three defining properties: its protocol,
its waiting strategy, and its scheduling policy (summarized in Figure 2).

The protocol is the synchronization mechanism that the spin-lock uses to
guarantee atomicity, or mutual exclusion, so that only one thread or process can
hold a lock at any time. Typical mechanisms include global flags and counters
and distributed queue data structures that locks manipulate using hardware-
supported atomic instructions. The waiting strategy is the action that threads
(or processes) take when they fail to acquire the lock. Typical wait strategies
for spin-locks include spinning and backoff. Backoff is a spinning technique that

- 62 -

Spin-lock

Protocol Wait Strategy Scheduling Policy

Fig. 2: Properties of a Spin-Lock Algorithm

systematically reduces the amount of polling. Locks other than spin-locks may
use different strategies like blocking. Lastly, the scheduling policy is the strategy
for determining which waiter should go next when threads are contending for
a lock. Most lock algorithms have fixed scheduling policies that are intrinsic to
their protocol mechanism. Typical policies include “Free-for-all” and “FIFO”.
Free-for-all refers to the unpredictability of which waiter will go next while FIFO
refers to a first-come first-serve fair ordering.

The most well-known spin-lock algorithms include Test and Set (TAS), Test
and Set with Exponential Backoff (TASEB), Ticket locks, MCS queue locks,
and priority locks (PR Locks). Table 1 summarizes the protocol mechanisms
and scheduling policy of these locks. In the next section, we will revisit the
information in this table. The next section describes the historical evolution of
various lock algorithms and the challenges that motivated them.

2.2 A Historical Perspective on Lock Algorithms

Because synchronization is such an important part of parallel programming, a
wide variety of different algorithms exist. Two of the most basic are the Test
and Set lock and the Ticket lock. Both algorithms have poor scaling performance
when large numbers of threads or processes are contending for the lock. Ineffi-
ciency typically stems from degraded performance in the shared memory system
when contention increases [3].

This led to an optimization on the Test and Set lock called Test and Set
with Exponential Backoff that limits contention by systematically introducing
wait periods between polls to the lock variable. Other efforts to improve per-
formance scalability were based on distributed queues. Queue locks have the
property that lock waiters spin on local variables which improves performance
on cache-coherent shared memory systems [3]. Some popular queue-based spin-
locks include the MCS lock [4] and MCS-variants such as the CLH lock [5]. Other
works have since improved upon queue locks. The QOLB lock [6] improves perfor-
mance by adding to the queue lock’s local-spinning and queue-based techniques
the techniques of collocation and synchronized prefetch.

One key deficiency of the queue-based algorithms is poor performance at
small and medium scales due to the overhead of operations on the distributed
queue. Smartlock gets better performance by dynamically switching to locks
with low overhead when the scale is smaller. Table 1 summarizes the scalability
of the various lock protocols. In a sense, research in scalable lock algorithms
compliments the Smartlocks work because the Smartlock can use these base

- 63 -

Table 1: Summary of Lock Algorithms

Algorithms Protocol Mechanism Policy Scalability Target Scenario

TAS Global Flag Free-for-All Not Scalable Low Contention

TASEB Global Flag Randomizing Try-Retry Not Scalable Mid Contention

Ticket Lock Two Global Counters FIFO Not Scalable Mid Contention

MCS Distributed Queue FIFO Scalable High Contention

Priority Lock Distributed Queue Arbitrary Scalable Asymmetric Sharing Pattern

Reactive Adaptive (not priority) Adaptive (not arbitrary) Scalable Dynamic (not asymmetric)

Smartlock Adaptive (w/ priority) Adaptive (arbitrary) Scalable Dynamic (w/ asymmetry)

algorithms in its repertoire of dynamic implementations and leverage the benefits
that any new algorithms bring.

Another key deficiency of the above algorithms is that they can perform
poorly when the number of threads (or processes) exceeds the number of available
cores, causing context switches. Problems arise when a running thread spins,
waiting for action from another thread that is swapped out. As demonstrated
in [7] these problems are especially bad for scalable distributed lock algorithms
like queue locks. Lock strategies have been developed to optimize the interaction
of locks and the OS Scheduler, including preemption-safe ticket locks and queue
locks and scheduler-conscious queue locks [7]. These approaches could also be
integrated into the Smartlock base.

Other orthogonal efforts to improve performance have developed special-
purpose locks for some scenarios. The readers-writer lock is one example [8] that
enables concurrent read access (with exclusive write access). Priority locks were
developed for database applications where transactions have different importance
[9]. Priority locks present many challenges such as priority inversion, starvation,
and deadlock, and are a rich area of research [10]. NUCA-aware locks were
developed to improve performance on NUCA memory systems [11].

These special-purpose locks are important predecessors to Smartlocks be-
cause they are some of the first examples of locks that hint at the benefits of lock
acquisition scheduling. The write-biased reader-writer scheduling policy treats
writers preferentially over readers. The priority lock explicitly supports prioriti-
zation of lock holders. The NUCA-aware lock uses a policy that prefers releasing
locks to near neighbors for better memory system performance. Smartlock lock
scheduling policies can emulate these policies (see Section 3.5 and Section 4.2).

The key advantage of Smartlock over these predecessors is that Smartlock
is a one-size-fits-most solution that uses machine learning to automate the pro-
cess of discovering good policies. Programmers can ignore the complexity of a.)
identifying what a good scheduling policy would be and which special-purpose
lock algorithm among dozens they should use or b.) figuring out how to program
the priorities in a priority lock to make it do something useful for them while
avoiding priority inversion, starvation, and deadlock.

The next section compares Smartlocks to other adaptive lock strategies.

- 64 -

2.3 Adaptive Locks

Various adaptive techniques have been proposed to design synchronization strate-
gies that scale well across different systems, under a variety of dynamic conditions
[1, 12, 13]. These are Smartlock’s closest related works. A recent patch for Real-
Time Linux modifies its kernel support for user-level locks so that locks adapt
wait strategies between spinning and blocking: if locks are spinning for too long,
the implementation switches to blocking. This is an adaptation that could be in-
corporated into Smartlocks. Other related works are orthogonal compiler-based
techniques that build multiple versions of the code using different synchroniza-
tion algorithms then periodically sample throughout execution, switching to the
best as necessary [13]. Other techniques such as reactive locks [1] are library-
based like Smartlocks. Library-based approaches have the advantage that they
can be improved over time and have those improvements reflected in applications
that dynamically link against them.

Like Smartlocks, reactive locks also perform better than the “scalable” lock
algorithms at small and medium scales by dynamically adapting their internal
algorithm to match the contention scale. The main difference is that Smartlock’s
strategies are optimized for asymmetric multicores: in addition to adapting for
scale, Smartlocks uses a novel form of adaptation that we call lock acquisition
scheduling. The scheduling policies of the various lock strategies are contrasted in
Table 1. In Section 4.2, our results demonstrate empirically that lock acquisition
scheduling is an important optimization for asymmetric multicores.

The Smartlock approach differs in another way: while prior work focused on
performance optimization, Smartlock targets broader optimization goals which
may also include power, latency, application-defined criteria, and combinations
thereof. Whereas existing approaches attempt to infer performance indirectly
from statistics internal to the lock library (such as the amount of lock con-
tention), Smartlocks uses a direct measure provided by the programmer via the
Heartbeats API2 that more reliably captures application goals.

2.4 Machine Learning in Multicore

Recently, researchers have begun to realize that machine learning is a powerful
tool for managing the complexity of multicore systems. So far, several important
works have used machine learning to build a self-optimizing memory controller
[14] and to coordinate management of interacting chip resources such as cache
space, off-chip bandwidth, and the power budget [15]. Our insight is that machine
learning can be applied to synchronization as well, and our results demonstrate
that machine learning achieves near-optimal results for the benchmarks we study.

3 Smartlock

Smartlocks is a spin-lock library that adapts its internal implementation during
application execution using heuristics and machine learning. Smartlocks opti-
2 See Section 3.1 on annotating goals with the Heartbeats API.

- 65 -

Table 2: Smartlock API

Function Prototype Description

smartlock helper::smartlock helper() Spawns Smartlock helper thread
smartlock helper::∼smartlock helper() Joins Smartlock helper thread

smartlock::smartlock(int max lockers, hb* hb ptr) Instantiates a Smartlock
smartlock::∼smartlock() Destroys a Smartlock
void smartlock::acquire(int id) Acquires the lock
void smartlock::release(int id) Releases the lock

mizes toward a user-defined goal (programmed using the Application Heart-
beats framework [2]) which may relate to performance, power, problem-specific
criteria, or combinations thereof. This section describes the Smartlocks API and
how Smartlocks are integrated into applications, followed by an overview of the
Smartlock design and details about each component. We conclude by describing
the machine learning engine and its justification.

3.1 Programming Interface

Smartlocks is a C++ library for spin-lock synchronization and resource-sharing.
The Smartlock API is similar to pthread mutexes, and applications link against
Smartlocks just the way they do the pthreads library. Smartlocks supports off-
the-shelf pthread apps, requiring trivial modifications to the source to use Smart-
locks instead. While the underlying Smartlocks implementation is dynamic, the
API abstracts the details and provides a consistent interface.

The API is summarized in Table 2. The first significant difference between
the Smartlock and pthread API is that Smartlocks has a function to initialize
the library.3 This function spawns a thread for use by any Smartlocks that
get instantiated. The next difference is that Smartlock initialization requires a
pointer to a Heartbeats object so that the Smartlock can use the Heartbeats API
[2] in the optimization process. The last difference is that Smartlock’s acquire
and release functions require a unique thread or process id (zero-indexed).4

Heartbeats is a generic, portable programming interface developed in [2] that
applications use to indicate high-level goals and measure their performance or
progress toward meeting them. The framework also enables external components
such as system software or hardware to query an application’s heartbeat perfor-
mance, also called the heart rate. Goals may include throughput, power, latency,
output quality, others, and combinations thereof.

Figure 3 part a) shows the interaction between Smartlocks, Heartbeats, and
the application. The application instantiates a Heartbeat object and one or more
Smartlocks. Each Smartlock is connected to the Heartbeat object which provides
the reward signal that drives the lock’s optimization process. The signal feeds
into each lock’s machine learning engine and heuristics which tune the lock’s
protocol, wait strategy, and lock scheduling policy to maximize the reward.

3 This could be made unnecessary by auto-initializing upon the first Smartlock instantiation.
4 This could be made unnecessary through the use of thread local storage or other techniques.

- 66 -

App
Code

Smartlock
Node

App
Code

Smartlock
Node

App
Code

Smartlock
Node

Application ThreadsSmartlock Helper Thread

Rsvd
for all
SLs

SL12

1

3

(b)(a)
Application

Hearbeats
APISmartlock

Parameters

ML Engine

Smartlock

Hearbeats
reward

Fig. 3: a) Application-Smartlocks Interaction. Smartlock ML engine tunes Smartlock
to maximize Heartbeat reward signal which encodes application’s goals. b) Smartlock
Implementation Architecture. Smartlock interface abstracts underlying distributed im-
plementation and helper thread.

Smartlock

Protocol
Selector

Wait Strategy
Selector

Lock Acquisition
Scheduler

Selector Installer Selector Installer Policy
Generator

Installer

Heartbeats

Fig. 4: Smartlock Functional Design. A component to optimize each aspect of a lock.

As illustrated in Figure 3 part b), Smartlocks are shared memory objects.
All application threads acquire and release a Smartlock by going through a
top-level wrapper that abstracts the internal distributed implementation of the
Smartlock. Each application thread actually contains an internal Smartlock node
that coordinates with other nodes for locking (and waiting and scheduling). Each
Smartlock object has adaptation engines as well that run alongside application
threads in a separate helper thread in a smartlock helper object. Adaptation
engines for each Smartlock get executed in a round-robin fashion.

3.2 Design Overview

As depicted in Figure 4, there are three major components to the Smartlock de-
sign: the Protocol Selector, the Wait Strategy Selector, and the Lock Acquisition
Scheduler. Each corresponds to one of the general features of lock algorithms (see
Section 2.1) and is responsible for the runtime adaptation of that feature.

3.3 Protocol Selector

The Protocol Selector is responsible for protocol adaptation within the Smart-
lock. Supported protocols include {TAS, TASEB, Ticket Lock, MCS, PR Lock}
which each have different performance scaling characteristics. The performance
of a given protocol depends upon its implementation and how much contention
there is for the lock. The Protocol Selector tries to identify what scale of con-
tention the Smartlock is experiencing and match the best protocol.

There are two major challenges to adapting protocols dynamically. The first
is determining an algorithm for when to switch and what protocol to use. The
second is ensuring correctness and good performance during protocol transitions.

- 67 -

App
Code

Smartlock
Node

App
Code

Smartlock
Node

App
Code

Smartlock
Node

App
Code

Smartlock
Node

App
Code

Smartlock
Node

App
Code

Smartlock
Node

Application ThreadsSmartlock Helper Thread

Selector
(Protocol Selector)

Selector
(Wait Strategy Selector)

Policy Generator
(Lock Acquisition Scheduler)

Fig. 5: Smartlock Helper Thread Architecture. Each Smartlock’s adaptation compo-
nents run decoupled from application threads in a separate helper thread.

As previously shown in Figure 4, the Protocol Selector has a component
to address each problem: a Selector and an Installer. The Selector heuristically
identifies what scale the Smartlock is experiencing and matches the best proto-
col, similar to the method in [1]: it measures lock contention and compares it
against threshold regions empirically derived for the given host architecture and
configuration. When contention deviates from the current region, the Selector
initiates installation of a new protocol. Alternatively, the self-tuning approach
in [16] could be used. As illustrated in Figure 5, the Selector executes in the
Smartlock helper thread (described previously in Section 3.1).

The Installer installs a new protocol using a simple, standard technique called
consensus objects. An explanation of consensus objects is outside the scope of
this paper but is detailed in [1]. Protocol transitions have some built-in hysteresis
to prevent thrashing.

3.4 Wait Strategy Selector

The Wait Strategy Selector adapts wait strategies. Supported strategies in-
clude {spinning, backoff}, and could be extended to include blocking or hybrid
spinning-blocking. Designing the Wait Strategy Selector poses two challenges.
The first is designing an algorithm to determine when to switch strategies. The
second is ensuring correctness and reasonable performance during transitions.
The Wait Strategy Selector has a component to address each of these problems:
a Selector and an Installer.

Presently, the implementation of the Selector is null since each of Smartlock’s
currently supported protocols have fixed waiting algorithms. E.g. TASEB uses
backoff and MCS and PR Lock use spinning. Eventually, the Wait Strategy
Selector will run in the Smartlock’s helper thread (described in Section 3.1) as
illustrated in Figure 5. Careful handling of transitions in the wait strategy are
still required and are again achieved through consensus objects.

3.5 Lock Acquisition Scheduler

The Lock Acquisition Scheduler is responsible for adapting the scheduling policy,
which determines who should acquire a contended lock. As illustrated in Figure

- 68 -

4, the Lock Acquisition Scheduler consists of two components: the Policy Gener-
ator and the Installer. The Policy Generator uses machine learning to optimize
the scheduling policy, and the Installer is responsible for smoothly coordinating
transitions between policies.

Like the Protocol Selector and Wait Strategy Selector, designing a scheduler
for lock acquisitions presents challenges. The first challenge is generating timely
scheduling decisions, and the second is generating good scheduling decisions.

Since locks are typically held for less time than it takes to compute which
waiter should go next, the scheduler adopts a decoupled architecture that does
not pick every next lock holder. Rather, the scheduler works at a coarser granu-
larity and enforces scheduling decisions through prioritization and priority locks.
The scheduler works with the Smartlock’s PR Lock protocol to schedule via con-
tinually adapting lock holder priority settings.

Figure 5 shows that the Lock Acquisition Scheduler’s Policy Generator runs
in the Smartlock’s helper thread (see Section 3.1) and is decoupled from the
Smartlock’s lock protocols. The policy generator typically updates the policy
every few lock acquisitions, independent of any Smartlock acquire and release
operations driven by the application.

Smoothly handling decoupled policy updates requires no special efforts in the
Installer. Transitions between policies are easy because only one of Smartlock’s
protocols, the PR Lock, supports non-fixed policies (see Table 1) and the PR
Lock is implemented such that policies can be updated partially or incrementally
(or even modified while a thread is in the wait pool) with no ill effects.

The Policy Generator addresses the second challenge (coming up with algo-
rithms that yield good scheduling decisions) by using machine learning. While
it is true that the asymmetric multicore optimizations this paper explores in
Section 4 (adapting to dynamic changes in clock frequencies) could by achieved
heuristically by reading off core clock frequencies and ranking processor prior-
ities accordingly, Smartlock’s machine learning approach has some advantages:
heuristics are brittle and special-purpose whereas machine learning is a generic
optimization strategy; good heuristics can be too difficult to develop when prob-
lems get really complex or dynamic; and finally, real-world problems often require
co-optimizing for several problems simultaneously, and it is too difficult to come
up with effective heuristics for multi-layered problems. Important recent work
in coordinating management of interacting CMP chip resources has come to a
similar conclusion [15].

3.6 Policy Generator Learning Engine

To adaptively prioritize contending threads, Smartlocks use a Reinforcement
Learning (RL) algorithm which treats the heartbeat as a reward and attempts
to maximize it. From the RL perspective, this presents a number of challenges:
the state space is almost completely unobservable, state transitions are semi-
Markov due to context switches, and the action space is exponentially large.

Because we need an algorithm that is a) fast enough for on-line use and b) can
tolerate severe inobservability, we adopt an average reward optimality criterion

- 69 -

[17] and use policy gradients to learn a good policy [18]. Policy gradients are
particularly well-suited for a number of reasons, one of which is action selection.
At each update, the RL engine must select a priority ordering of the threads;
n threads and k priority levels means kn possible actions; other RL algorithms
which require maximization over the action space are intractable.

The goal of policy gradients is to improve a policy by estimating the gradient
of the average reward with respect to the policy parameters. The reward is taken
to be the heartbeat rate, smoothed over a small window of time. Assume that we
have access to some policy π, parameterized by θ. The average reward of π(·|θ) is
a function of θ: η(θ) ≡ E{R} = limt→∞

1
t

∑t
i=1 ri, where R is a random variable

representing reward, and ri is a particular reward at time i. The expectation is
approximated with importance sampling, as follows (we omit the full derivation
in the interests of space):

∇θη(θ) = ∇θE{R} ≈
1
N

N∑
i=1

ri∇θ log π(ai|θ) (1)

where the sequence of rewards ri is obtained by executing the sequence of actions
ai sampled from π(·|θ).

So far, we have said nothing about the particular form of the policy. We
must address address the combinatorics of the naive action space, construct a
stochastic policy which balances exploration and exploitation, and which can be
smoothly parameterized to enable gradient-based learning.

We address all of these issues with a stochastic soft-max policy. We parame-
terize each thread i with a real valued weight θi, and then sample a complete pri-
ority ordering over threads – this relaxes a combinatorially large discrete action
space into a continuous policy space. We first sample the highest-priority thread
by sampling from p(a1) = exp{θa1}/

∑n
j=1 exp{θj} . We then sample the next-

highest priority thread by removing the first thread and renormalizing the pri-
orities. Let S be the set of all threads: p(a2|a1) = exp{θa2}/

∑
j∈S−{a1} exp{θj}.

We repeat this process n − 1 times, until we have sampled a complete set of
priorities. The overall likelihood of the policy is therefore:

π(a) = p(a1)p(a2|a1) · · · p(an|a1, · · · , an−1) =
n∏
i=1

exp{θai
}∑

j∈S−{a1,···,ai−1} exp{θj}
.

The gradient needed in Eq. 1 is easily computed. Let pij be the probability that
thread i was selected to have priority j, with the convention that pij = 0 if
the thread has already been selected to have a priority higher than j. Then the
gradient for parameter i is simply ∇θi

= 1−
∑
j pij .

When enough samples are collected (or some other gradient convergence
test passes), we take a step in the gradient direction: θ = θ + α∇θη(θ), where
α is a step-size parameter. Higher-order policy optimization methods, such as
stochastic conjugate gradients [19] or Natural Actor Critic [20], would also be
possible. Future work could explore these and other agents.

- 70 -

4 Experimental Results

We now illustrate how how Smartlocks can help solve heterogeneity problems
by applying them to the problem of adapting to the variation in core clock
frequencies caused by thermal throttling.

4.1 Experimental Setup

Our setup emulates an asymmetric multicore with six cores, where core frequen-
cies are drawn from the set {3.16 GHz, 2.11 GHz}. The benchmark is synthetic,
and represents a simple work-pile programming model (without work-stealing).
The app uses pthreads for thread spawning and Smartlocks within the work-pile
data structure. The app is compiled using gcc v.4.3.2. The benchmark uses 5
threads (reserving one for Smartlock use) consisting of the main thread and 4
workers. The main thread generates work while the workers pull work items from
the queue and perform the work; each work item requires a constant number of
cycles to complete. On the asymmetric multicore, workers will, in general, exe-
cute on cores running at different speeds; thus, x cycles on one core may take
more wall-clock time to complete than on another core.

The experiment models an asymmetric multicore but runs on a homogeneous
8-core (dual quad core) Intel Xeon(r) X5460 CPU with 8 GB of DRAM running
Debian Linux kernel version 2.6.26. In hardware, each core runs at its native 3.16
GHz frequency. Linux system tools like cpufrequtils could be used to dynamically
manipulate hardware core frequencies, but our experiment instead models clock
frequency asymmetry using a simpler yet powerful software method: adjusting
the virtual performance of threads by manipulating the number of heartbeats.
At each point where threads would ordinarily issue 1 beat, they instead issue 2 or
3, depending on whether they are emulating a 2.11 GHz or 3.16 GHz core. This
artificially inflates the total heartbeats but preserves the pertinent asymmetry.

The experiment simulates a runtime environment by simulating two thermal-
throttling events which change core speeds. No thread migration is assumed.
Instead, the virtual performance of each thread is adjusted by adjusting heart-
beats. The main thread always runs at 3.16 GHz. At any given time, 1 worker
runs at 3.16 GHz and the others run at 2.11 GHz. The thermal throttling events
change which worker is running at 3.16 GHz. The first event occurs at time 1.4s.
The second occurs at time 2.7s and reverses the first event.

4.2 Results

Figure 6 shows several things. First, it shows the performance of the Smart-
lock against existing reactive lock techniques. At any given time, reactive lock
performance is bounded by the performance of its highest performing inter-
nal algorithm; thus, this experiment models the reactive lock as a write-biased
readers-writer lock (described in Section 2).5 Smartlock is also compared against

5 This is the highest performing algorithm for this problem known to the authors to be
included in a reactive lock implementation.

- 71 -

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0

0.6

0.8

1

1.2

1.4

1.6
x 10

6

Time (seconds)H
ea

rt
ra

te
 (

be
at

s
pe

r
se

co
nd

 /
1e

6)

Optimal

Smartlock

Priority lock: policy 1

Priority lock: policy 2

Spin−lock: Reactive Lock

Spin−Lock: Test and Set

Workload #1 Workload #2 Workload #1

Fig. 6: Performance results on thermal throttling experiment. Smartlocks adapt to dif-
ferent workloads; no single static policy is optimal for all of the different conditions.

a baseline Test and Set spin-lock. The number of cycles required to perform each
unit of work has been chosen so that the difference in acquire and release over-
heads between lock algorithms is negligible but so that lock contention is high;
what is important is the policy intrinsic to the lock algorithm (and the adap-
tivity of the policy in the case of the Smartlock). Smartlock always outperforms
the write-biased readers-writer lock and the Test and Set lock. This implies that
reactive locks do not achieve optimal performance for this scenario.

The second thing that Figure 6 shows is that there is a gap between reactive
lock performance and optimal theoretical performance. One lock algorithm /
policy that can outperform standard techniques is the priority lock and prior-
itized access. The graph compares two priority locks with hand-coded priority
settings against reactive locks. The first priority lock is optimal for two regions
of the graph: from the beginning to the first throttling event and from the sec-
ond throttling event to the end. Its policy sets the main thread and worker 0
to a high priority value and all other threads to a low priority value (e.g. high
= 2.0, low = 1.0). The second priority lock is optimal for the region of the
graph between the two throttling events; its policy sets the main thread and
worker 3 to a high priority value and all other threads to a low priority value.
Within the appropriate regions, the priority locks outperform the reactive lock,
clearly demonstrating the gap between reactive lock performance and optimal
theoretical performance.

The final thing that Figure 6 illustrates is that Smartlock approaches optimal
performance and readily adapts to the two thermal throttling events. Within
each region of the graph, Smartlock approaches the performance of the two
hand-coded priority lock policies. Performance dips after the throttling events
(time=1.4s and time=2.7s) but improves quickly.

Figure 7 shows the time-evolution of the Smartlock’s internal weights ℘i.
Initially, threads all have the same weight, implying equal probability of being
selected as high-priority threads. Between time 0 and the first event, Smartlock
learns that the main thread and worker 0 should have higher priority, and uses a
policy very similar to optimal hand-coded one. After the first event, the Smart-

- 72 -

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0
−10

−5

0

5

10

Time (seconds)

T
hr

ea
d

pr
io

rit
y

w
ei

gh
ts

 θ
i

Main thread

Worker 0

Worker 1

Worker 2

Worker 3

Workload #1 Workload #2 Workload #1

Fig. 7: Time evolution of weights in the lock acquisition scheduling policy.

lock learns that the priority of worker 0 should be decreased and the priority of
worker 3 increased, again learning a policy similar to the optimal hand-coded
one. After the second event, Smartlock learns a third optimal policy.

5 Conclusion

Smartlocks is a novel open-source synchronization library designed to remove
some of the complexity of writing applications for multicores and asymmetric
multicores. Smartlocks is a self-aware computing technology that adapts itself at
runtime to help applications and system software meet their goals. This paper
introduces a novel adaptation strategy ideal for asymmetric multicores that we
term lock acquisition scheduling and demonstrates empirically that it can be
applied to dynamic frequency variation. The results show that Smartlocks, owing
to lock acquisition scheduling, can significantly outperform conventional locks
and reactive locks, Smartlock’s closest predecessor, on asymmetric multicores.

In the same way that atomic instructions act as building blocks to construct
higher-level synchronization objects, Smartlocks can serve as an adaptive build-
ing block in many contexts, such as operating systems, libraries, system software,
DB / webservers, and managed runtimes. Smartlocks can be applied to problems
such as load-balancing and mitigating thread interference. For example, placing
a Smartlock between applications and each DRAM port could learn an opti-
mal partitioning of DRAM bandwidth; Smartlocks guarding disk accesses could
learn adaptive read/write policies. In general, Smartlocks could mitigate many
thread interference problems by giving applications a share of each resource and
intelligently managing access.

Smartlocks may also be a key component in developing asymmetry-optimized
parallel programming models. One strong candidate is a modification of the
work-pool with work-stealing programming model that maintains the self schedul-
ing property of work-stealing but optimizes by adapting the work-stealing heuris-
tic; this can be accomplished by replacing the lock around the work-pool data
structure and prioritizing access to each thread’s work pool.

Smartlocks are, of course, not a silver bullet, but they do provide a foundation
for many researchers to further investigate possible synergy between multicore
programming and the power of adaptation and machine learning.

- 73 -

Bibliography

[1] Lim, B.H., Agarwal, A.: Reactive synchronization algorithms for multiprocessors.
SIGOPS Oper. Syst. Rev. 28(5) (1994) 25–35

[2] Hoffmann, H., Eastep, J., Santambrogio, M., Miller, J., Agarwal, A.: Application heart-
beats for software performance and health. Technical Report MIT-CSAIL-TR-2009-035,
MIT (Aug 2009)

[3] Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9(1) (1991) 21–65

[4] Mellor-Crummey, J.M., Scott, M.L.: Synchronization without contention. SIGARCH
Comput. Archit. News 19(2) (1991) 269–278

[5] Magnusson, P., Landin, A., Hagersten, E.: Queue locks on cache coherent multiprocessors.
(Apr 1994) 165–171

[6] Kägi, A., Burger, D., Goodman, J.R.: Efficient synchronization: let them eat qolb. In:
Proceedings of the 24th annual international symposium on Computer architecture, New
York, NY, USA, ACM (1997) 170–180

[7] Kontothanassis, L.I., Wisniewski, R.W., Scott, M.L.: Scheduler-conscious synchroniza-
tion. ACM Trans. Comput. Syst. 15(1) (1997) 3–40

[8] Mellor-Crummey, J.M., Scott, M.L.: Scalable reader-writer synchronization for shared-
memory multiprocessors. In: Proceedings of the 3rd ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York, NY, USA, ACM (1991) 106–
113

[9] Johnson, T., Harathi, K.: A prioritized multiprocessor spin lock. IEEE Trans. Parallel
Distrib. Syst. 8(9) (1997) 926–933

[10] Wang, C.D., Takada, H., Sakamura, K.: Priority inheritance spin locks for multiproces-
sor real-time systems. Parallel Architectures, Algorithms, and Networks, International
Symposium on 0 (1996) 70

[11] Radović, Z., Hagersten, E.: Efficient synchronization for nonuniform communication ar-
chitectures. In: Proceedings of the 2002 ACM/IEEE conference on Supercomputing, Los
Alamitos, CA, USA, IEEE Computer Society Press (2002) 1–13

[12] Karlin, A.R., Li, K., Manasse, M.S., Owicki, S.: Empirical studies of competitve spinning
for a shared-memory multiprocessor. In: Proceedings of the thirteenth ACM symposium
on Operating systems principles, New York, NY, USA, ACM (1991) 41–55

[13] Diniz, P.C., Rinard, M.C.: Eliminating synchronization overhead in automatically par-
allelized programs using dynamic feedback. ACM Trans. Comput. Syst. 17(2) (1999)
89–132

[14] Ipek, E., Mutlu, O., Mart́ınez, J.F., Caruana, R.: Self-optimizing memory controllers:
A reinforcement learning approach. In: Proc of the 35th International Symposium on
Computer Architecture. (2008) 39–50

[15] Bitirgen, R., Ipek, E., Martinez, J.F.: Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning approach. In: Proceedings of the
2008 41st IEEE/ACM International Symposium on Microarchitecture, Washington, DC,
USA, IEEE Computer Society (2008) 318–329

[16] Hoai Ha, P., Papatriantafilou, M., Tsigas, P.: Reactive spin-locks: A self-tuning approach.
In: Proceedings of the 8th International Symposium on Parallel Architectures,Algorithms
and Networks, Washington, DC, USA, IEEE Computer Society (2005) 33–39

[17] Mahadevan, S.: Average reward reinforcement learning: Foundations, algorithms, and
empirical results. Machine Learning 22 (1996) 159–196

[18] Williams, R.J.: Toward a theory of reinforcement-learning connectionist systems. Tech-
nical Report NU-CCS-88-3, Northeastern University (1988)

[19] Schraudolph, N.N., Graepel, T.: Towards stochastic conjugate gradient methods. In:
Proc. 9th Intl. Conf. Neural Information Processing. (2002) 853–856

[20] Peters, J., Vijayakumar, S., Schaal, S.: Natural actor-critic. In: European Conference on
Machine Learning (ECML). (2005) 280–291

- 74 -

