Smartlocks: Self-Aware Synchronization through
Lock Acquisition Scheduling

Jonathan Eastep, David Wingate, Marco D. Santambrogio, and Anant Agarwal

Massachusetts Institute of Technology
{eastep, wingated, santambr, agarwal}@mit.edu

Abstract. As multicore processors become increasingly prevalent, sys-
tem complexity is skyrocketing. The advent of the asymmetric multicore
compounds this — it is no longer practical for an average programmer to
balance the system constraints associated with today’s multicores and
worry about new problems like asymmetric partitioning and thread in-
terference. Adaptive, or self-aware, computing has been proposed as one
method to help application and system programmers confront this com-
plexity. These systems take some of the burden off of programmers by
monitoring themselves and optimizing or adapting to meet their goals.

This paper introduces an open-source self-aware synchronization li-
brary for multicores and asymmetric multicores called Smartlocks. Smart-
locks is a spin-lock library that adapts its internal implementation dur-
ing execution using heuristics and machine learning to optimize toward
a user-defined goal, which may relate to performance, power, or other
problem-specific criteria. Smartlocks builds upon adaptation techniques
from prior work like reactive locks [1], but introduces a novel form of
adaptation designed for asymmetric multicores that we term lock acqui-
sition scheduling. Lock acquisition scheduling is optimizing which waiter
will get the lock next for the best long-term effect when multiple threads
(or processes) are spinning for a lock.

Our results demonstrate empirically that lock scheduling is important
for asymmetric multicores and that Smartlocks significantly outperform
conventional and reactive locks for asymmetries like dynamic variations
in processor clock frequencies caused by thermal throttling events.

1 Introduction

As multicore processors become increasingly prevalent, system complexity is
skyrocketing. It is no longer practical for an average programmer to balance
all of the system constraints and produce an application or system service that
performs well on a variety of machines, in a variety of situations. The advent of
the asymmetric multicore is making things worse. Addressing the challenges of
applying multicore to new domains and environments like cloud computing has
proven difficult enough; programmers are not accustomed to reasoning about
partitioning and thread interference in the context of performance asymmetry.
One increasingly prevalent approach to complexity management is the use of
self-aware hardware and software. Self-aware systems take some of the burden off



Test and Set
‘ Acquire ‘ cs ‘Release‘ SPARE RESOURCES ‘
‘ Acquire ‘ cs Release|  Acquire cs ‘ Release
‘ Acquire CS |Release] SPARE RESOURCES
Smartlock
‘ Acquire ‘ cs ‘Release‘ SPARE RESOURCES
‘ Acquire ‘ cs ‘ Release‘ SPARE RESOURCES
‘‘‘‘ - N SPARE
‘ Acquire cs Re\ease‘ Acquire CS |Release RESOURCES

4GS exec’ 4CSexec fime
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scheduling finishes 4 critical sections sooner and creates more spare execution resources.

of programmers by monitoring themselves and optimizing or adapting to meet
their goals. Interest in such systems has been increasingly recently. They have
been variously called adaptive, self-tuning, self-optimizing, autonomic, and or-
ganic systems, and they have been applied to a broad range of systems, including
embedded, real-time, desktop, server, and cloud systems.

This paper introduces an open-source' self-aware synchronization library
for multicores and asymmetric multicores called Smartlocks. Smartlocks is a
spin-lock library that adapts its internal implementation during execution us-
ing heuristics and machine learning. Smartlocks optimizes toward a user-defined
goal (programmed using the Application Heartbeats framework [2]) which may
relate to performance, power, problem-specific criteria, or combinations thereof.

Smartlock takes a different approach to adaptation than its closest prede-
cessor, the reactive lock [1]. Reactive locks optimize performance by adapting
to scale, i.e. selecting which lock algorithm to use based on how much lock
contention there is. Smartlocks use this technique, but use an additional novel
adaptation — designed explicitly for asymmetric multicores — that we term lock
acquisition scheduling. When multiple threads or processes are spinning, lock
acquisition scheduling is the procedure for determining who should get the lock
next, to maximize long-term benefit.

One reason lock acquisition scheduling is an important power and perfor-
mance opportunity is because performance asymmetries make cycles lost to
spinning idly more expensive on faster cores. Figure 1 illustrates that, with
significant asymmetries, the effect can be very pronounced. Using spin-locks can
be broken up into three computation phases: acquiring the lock, executing the
critical section (CS), then releasing the lock. The figure shows two scenarios
where two slow threads and one fast thread contend for a spin-lock: the top uses
a Test and Set lock not optimized for asymmetry, and the bottom shows what
happens when Smartlocks is used. We assume that the memory system limits
acquire and release but that the critical section executes faster on the faster core.

I The authors plan to release Smartlocks in January 2010.



In the top scenario, the lock naively picks the slower thread, causing the
faster thread to idle in the acquire stage. In the bottom scenario, the Smartlock
prioritizes the faster thread, minimizing its acquire time. The savings are put to
use executing a critical section, and the threads complete 4 total critical sections
sooner, giving a performance improvement. That improvement can be utilized
as a latency improvement when a task requires executing some fixed number of
critical sections, or it can be utilized as a throughput improvement (since the
faster thread is able to execute another critical section sooner and more critical
sections overall). The lock acquisition scheduler in the Smartlock scenario has the
advantage that it can also (simultaneously or alternatively) optimize the total
amount of spare execution cycles, which can be utilized for other computations
or for saving power by sleeping cores.

We empirically evaluate Smartlocks on a related scenario in Section 4. We
measure throughput for a benchmark based on a simple work-pool programming
model (without work stealing) running on an asymmetric multicore where core
clocks speeds vary due to two thermal throttling events. We compare Smartlocks
to conventional locks and reactive locks, and show that Smartlock significantly
outperforms other techniques, achieving near-optimal results.

The rest of this paper is organized as follows. Section 2 gives background
about the historical development of various lock techniques and compares Smart-
locks to related works. Section 3 describes the Smartlock implementation. Sec-
tion 4 details the benchmarks and experimental setup referenced above. Finally,
Section 5 concludes and identifies several additional domains in asymmetric mul-
ticore where Smartlock techniques may be applied.

2 Background and Related Work

This section begins with a basic description of spin-lock algorithms followed by
the historical development of various algorithms and the challenges they solved.
Then, this section compares Smartlocks to its most closely related works.

2.1 The anatomy of a Lock

Using spin-locks in applications can be thought of as executing a cycle of three
computation phases: acquiring the lock, executing the application’s critical sec-
tion (CS), then releasing the lock. Depending on the algorithms used in its ac-
quire and release phases, the spin-lock has three defining properties: its protocol,
its waiting strategy, and its scheduling policy (summarized in Figure 2).

The protocol is the synchronization mechanism that the spin-lock uses to
guarantee atomicity, or mutual exclusion, so that only one thread or process can
hold a lock at any time. Typical mechanisms include global flags and counters
and distributed queue data structures that locks manipulate using hardware-
supported atomic instructions. The waiting strategy is the action that threads
(or processes) take when they fail to acquire the lock. Typical wait strategies
for spin-locks include spinning and backoff. Backoff is a spinning technique that
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systematically reduces the amount of polling. Locks other than spin-locks may
use different strategies like blocking. Lastly, the scheduling policy is the strategy
for determining which waiter should go next when threads are contending for
a lock. Most lock algorithms have fixed scheduling policies that are intrinsic to
their protocol mechanism. Typical policies include “Free-for-all” and “FIFQO”.
Free-for-all refers to the unpredictability of which waiter will go next while FIFO
refers to a first-come first-serve fair ordering.

The most well-known spin-lock algorithms include Test and Set (TAS), Test
and Set with Exponential Backoff (TASEB), Ticket locks, MCS queue locks,
and priority locks (PR Locks). Table 1 summarizes the protocol mechanisms
and scheduling policy of these locks. In the next section, we will revisit the
information in this table. The next section describes the historical evolution of
various lock algorithms and the challenges that motivated them.

2.2 A Historical Perspective on Lock Algorithms

Because synchronization is such an important part of parallel programming, a
wide variety of different algorithms exist. Two of the most basic are the Test
and Set lock and the Ticket lock. Both algorithms have poor scaling performance
when large numbers of threads or processes are contending for the lock. Ineffi-
ciency typically stems from degraded performance in the shared memory system
when contention increases [3].

This led to an optimization on the Test and Set lock called Test and Set
with Exponential Backoff that limits contention by systematically introducing
wait periods between polls to the lock variable. Other efforts to improve per-
formance scalability were based on distributed queues. Queue locks have the
property that lock waiters spin on local variables which improves performance
on cache-coherent shared memory systems [3]. Some popular queue-based spin-
locks include the MCS lock [4] and MCS-variants such as the CLH lock [5]. Other
works have since improved upon queue locks. The QOLB lock [6] improves perfor-
mance by adding to the queue lock’s local-spinning and queue-based techniques
the techniques of collocation and synchronized prefetch.

One key deficiency of the queue-based algorithms is poor performance at
small and medium scales due to the overhead of operations on the distributed
queue. Smartlock gets better performance by dynamically switching to locks
with low overhead when the scale is smaller. Table 1 summarizes the scalability
of the various lock protocols. In a sense, research in scalable lock algorithms
compliments the Smartlocks work because the Smartlock can use these base



Table 1: Summary of Lock Algorithms

Algorithms Protocol Mechanism ‘ Policy ‘ Scalability ‘ Target Scenario

TAS Global Flag Free-for-All Not Scalable Low Contention
TASEB Global Flag Randomizing Try-Retry |Not Scalable Mid Contention
Ticket Lock Two Global Counters FIFO Not Scalable Mid Contention

MCS Distributed Queue FIFO Scalable High Contention
Priority Lock Distributed Queue Arbitrary Scalable |Asymmetric Sharing Pattern
Reactive Adaptive (not priority)|Adaptive (not arbitrary)| Scalable Dynamic (not asymmetric)
Smartlock Adaptive (w/ priority) Adaptive (arbitrary) Scalable Dynamic (w/ asymmetry)

algorithms in its repertoire of dynamic implementations and leverage the benefits
that any new algorithms bring.

Another key deficiency of the above algorithms is that they can perform
poorly when the number of threads (or processes) exceeds the number of available
cores, causing context switches. Problems arise when a running thread spins,
waiting for action from another thread that is swapped out. As demonstrated
in [7] these problems are especially bad for scalable distributed lock algorithms
like queue locks. Lock strategies have been developed to optimize the interaction
of locks and the OS Scheduler, including preemption-safe ticket locks and queue
locks and scheduler-conscious queue locks [7]. These approaches could also be
integrated into the Smartlock base.

Other orthogonal efforts to improve performance have developed special-
purpose locks for some scenarios. The readers-writer lock is one example [8] that
enables concurrent read access (with exclusive write access). Priority locks were
developed for database applications where transactions have different importance
[9]. Priority locks present many challenges such as priority inversion, starvation,
and deadlock, and are a rich area of research [10]. NUCA-aware locks were
developed to improve performance on NUCA memory systems [11].

These special-purpose locks are important predecessors to Smartlocks be-
cause they are some of the first examples of locks that hint at the benefits of lock
acquisition scheduling. The write-biased reader-writer scheduling policy treats
writers preferentially over readers. The priority lock explicitly supports prioriti-
zation of lock holders. The NUCA-aware lock uses a policy that prefers releasing
locks to near neighbors for better memory system performance. Smartlock lock
scheduling policies can emulate these policies (see Section 3.5 and Section 4.2).

The key advantage of Smartlock over these predecessors is that Smartlock
is a one-size-fits-most solution that uses machine learning to automate the pro-
cess of discovering good policies. Programmers can ignore the complexity of a.)
identifying what a good scheduling policy would be and which special-purpose
lock algorithm among dozens they should use or b.) figuring out how to program
the priorities in a priority lock to make it do something useful for them while
avoiding priority inversion, starvation, and deadlock.

The next section compares Smartlocks to other adaptive lock strategies.



2.3 Adaptive Locks

Various adaptive techniques have been proposed to design synchronization strate-
gies that scale well across different systems, under a variety of dynamic conditions
[1, 12, 13]. These are Smartlock’s closest related works. A recent patch for Real-
Time Linux modifies its kernel support for user-level locks so that locks adapt
wait strategies between spinning and blocking: if locks are spinning for too long,
the implementation switches to blocking. This is an adaptation that could be in-
corporated into Smartlocks. Other related works are orthogonal compiler-based
techniques that build multiple versions of the code using different synchroniza-
tion algorithms then periodically sample throughout execution, switching to the
best as necessary [13]. Other techniques such as reactive locks [1] are library-
based like Smartlocks. Library-based approaches have the advantage that they
can be improved over time and have those improvements reflected in applications
that dynamically link against them.

Like Smartlocks, reactive locks also perform better than the “scalable” lock
algorithms at small and medium scales by dynamically adapting their internal
algorithm to match the contention scale. The main difference is that Smartlock’s
strategies are optimized for asymmetric multicores: in addition to adapting for
scale, Smartlocks uses a novel form of adaptation that we call lock acquisition
scheduling. The scheduling policies of the various lock strategies are contrasted in
Table 1. In Section 4.2, our results demonstrate empirically that lock acquisition
scheduling is an important optimization for asymmetric multicores.

The Smartlock approach differs in another way: while prior work focused on
performance optimization, Smartlock targets broader optimization goals which
may also include power, latency, application-defined criteria, and combinations
thereof. Whereas existing approaches attempt to infer performance indirectly
from statistics internal to the lock library (such as the amount of lock con-
tention), Smartlocks uses a direct measure provided by the programmer via the
Heartbeats API? that more reliably captures application goals.

2.4 Machine Learning in Multicore

Recently, researchers have begun to realize that machine learning is a powerful
tool for managing the complexity of multicore systems. So far, several important
works have used machine learning to build a self-optimizing memory controller
[14] and to coordinate management of interacting chip resources such as cache
space, off-chip bandwidth, and the power budget [15]. Our insight is that machine
learning can be applied to synchronization as well, and our results demonstrate
that machine learning achieves near-optimal results for the benchmarks we study.

3 Smartlock

Smartlocks is a spin-lock library that adapts its internal implementation during
application execution using heuristics and machine learning. Smartlocks opti-

2 See Section 3.1 on annotating goals with the Heartbeats APIL.



Table 2: Smartlock API

Function Prototype [Description

smartlock-helper: :smartlock-helper() Spawns Smartlock helper thread
smartlock_helper: :~smartlock_helper() Joins Smartlock helper thread
smartlock: :smartlock(int max_-lockers, hb* hb_ptr) |Instantiates a Smartlock
smartlock: : ~smartlock() Destroys a Smartlock

void smartlock::acquire(int id) Acquires the lock

void smartlock::release(int id) Releases the lock

mizes toward a user-defined goal (programmed using the Application Heart-
beats framework [2]) which may relate to performance, power, problem-specific
criteria, or combinations thereof. This section describes the Smartlocks API and
how Smartlocks are integrated into applications, followed by an overview of the
Smartlock design and details about each component. We conclude by describing
the machine learning engine and its justification.

3.1 Programming Interface

Smartlocks is a C++ library for spin-lock synchronization and resource-sharing.
The Smartlock API is similar to pthread mutexes, and applications link against
Smartlocks just the way they do the pthreads library. Smartlocks supports off-
the-shelf pthread apps, requiring trivial modifications to the source to use Smart-
locks instead. While the underlying Smartlocks implementation is dynamic, the
API abstracts the details and provides a consistent interface.

The API is summarized in Table 2. The first significant difference between
the Smartlock and pthread API is that Smartlocks has a function to initialize
the library.® This function spawns a thread for use by any Smartlocks that
get instantiated. The next difference is that Smartlock initialization requires a
pointer to a Heartbeats object so that the Smartlock can use the Heartbeats API
[2] in the optimization process. The last difference is that Smartlock’s acquire
and release functions require a unique thread or process id (zero-indexed).*

Heartbeats is a generic, portable programming interface developed in [2] that
applications use to indicate high-level goals and measure their performance or
progress toward meeting them. The framework also enables external components
such as system software or hardware to query an application’s heartbeat perfor-
mance, also called the heart rate. Goals may include throughput, power, latency,
output quality, others, and combinations thereof.

Figure 3 part a) shows the interaction between Smartlocks, Heartbeats, and
the application. The application instantiates a Heartbeat object and one or more
Smartlocks. Each Smartlock is connected to the Heartbeat object which provides
the reward signal that drives the lock’s optimization process. The signal feeds
into each lock’s machine learning engine and heuristics which tune the lock’s
protocol, wait strategy, and lock scheduling policy to maximize the reward.

3 This could be made unnecessary by auto-initializing upon the first Smartlock instantiation.
4 This could be made unnecessary through the use of thread local storage or other techniques.
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As illustrated in Figure 3 part b), Smartlocks are shared memory objects.
All application threads acquire and release a Smartlock by going through a
top-level wrapper that abstracts the internal distributed implementation of the
Smartlock. Each application thread actually contains an internal Smartlock node
that coordinates with other nodes for locking (and waiting and scheduling). Each
Smartlock object has adaptation engines as well that run alongside application
threads in a separate helper thread in a smartlock_helper object. Adaptation
engines for each Smartlock get executed in a round-robin fashion.

3.2 Design Overview

As depicted in Figure 4, there are three major components to the Smartlock de-
sign: the Protocol Selector, the Wait Strategy Selector, and the Lock Acquisition
Scheduler. Each corresponds to one of the general features of lock algorithms (see
Section 2.1) and is responsible for the runtime adaptation of that feature.

3.3 Protocol Selector

The Protocol Selector is responsible for protocol adaptation within the Smart-
lock. Supported protocols include {TAS, TASEB, Ticket Lock, MCS, PR Lock}
which each have different performance scaling characteristics. The performance
of a given protocol depends upon its implementation and how much contention
there is for the lock. The Protocol Selector tries to identify what scale of con-
tention the Smartlock is experiencing and match the best protocol.

There are two major challenges to adapting protocols dynamically. The first
is determining an algorithm for when to switch and what protocol to use. The
second is ensuring correctness and good performance during protocol transitions.
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As previously shown in Figure 4, the Protocol Selector has a component
to address each problem: a Selector and an Installer. The Selector heuristically
identifies what scale the Smartlock is experiencing and matches the best proto-
col, similar to the method in [1]: it measures lock contention and compares it
against threshold regions empirically derived for the given host architecture and
configuration. When contention deviates from the current region, the Selector
initiates installation of a new protocol. Alternatively, the self-tuning approach
in [16] could be used. As illustrated in Figure 5, the Selector executes in the
Smartlock helper thread (described previously in Section 3.1).

The Installer installs a new protocol using a simple, standard technique called
consensus objects. An explanation of consensus objects is outside the scope of
this paper but is detailed in [1]. Protocol transitions have some built-in hysteresis
to prevent thrashing.

3.4 Wait Strategy Selector

The Wait Strategy Selector adapts wait strategies. Supported strategies in-
clude {spinning, backoff}, and could be extended to include blocking or hybrid
spinning-blocking. Designing the Wait Strategy Selector poses two challenges.
The first is designing an algorithm to determine when to switch strategies. The
second is ensuring correctness and reasonable performance during transitions.
The Wait Strategy Selector has a component to address each of these problems:
a Selector and an Installer.

Presently, the implementation of the Selector is null since each of Smartlock’s
currently supported protocols have fixed waiting algorithms. E.g. TASEB uses
backoff and MCS and PR Lock use spinning. Eventually, the Wait Strategy
Selector will run in the Smartlock’s helper thread (described in Section 3.1) as
illustrated in Figure 5. Careful handling of transitions in the wait strategy are
still required and are again achieved through consensus objects.

3.5 Lock Acquisition Scheduler

The Lock Acquisition Scheduler is responsible for adapting the scheduling policy,
which determines who should acquire a contended lock. As illustrated in Figure
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4, the Lock Acquisition Scheduler consists of two components: the Policy Gener-
ator and the Installer. The Policy Generator uses machine learning to optimize
the scheduling policy, and the Installer is responsible for smoothly coordinating
transitions between policies.

Like the Protocol Selector and Wait Strategy Selector, designing a scheduler
for lock acquisitions presents challenges. The first challenge is generating timely
scheduling decisions, and the second is generating good scheduling decisions.

Since locks are typically held for less time than it takes to compute which
waiter should go next, the scheduler adopts a decoupled architecture that does
not pick every next lock holder. Rather, the scheduler works at a coarser granu-
larity and enforces scheduling decisions through prioritization and priority locks.
The scheduler works with the Smartlock’s PR Lock protocol to schedule via con-
tinually adapting lock holder priority settings.

Figure 5 shows that the Lock Acquisition Scheduler’s Policy Generator runs
in the Smartlock’s helper thread (see Section 3.1) and is decoupled from the
Smartlock’s lock protocols. The policy generator typically updates the policy
every few lock acquisitions, independent of any Smartlock acquire and release
operations driven by the application.

Smoothly handling decoupled policy updates requires no special efforts in the
Installer. Transitions between policies are easy because only one of Smartlock’s
protocols, the PR Lock, supports non-fixed policies (see Table 1) and the PR
Lock is implemented such that policies can be updated partially or incrementally
(or even modified while a thread is in the wait pool) with no ill effects.

The Policy Generator addresses the second challenge (coming up with algo-
rithms that yield good scheduling decisions) by using machine learning. While
it is true that the asymmetric multicore optimizations this paper explores in
Section 4 (adapting to dynamic changes in clock frequencies) could by achieved
heuristically by reading off core clock frequencies and ranking processor prior-
ities accordingly, Smartlock’s machine learning approach has some advantages:
heuristics are brittle and special-purpose whereas machine learning is a generic
optimization strategy; good heuristics can be too difficult to develop when prob-
lems get really complex or dynamic; and finally, real-world problems often require
co-optimizing for several problems simultaneously, and it is too difficult to come
up with effective heuristics for multi-layered problems. Important recent work
in coordinating management of interacting CMP chip resources has come to a
similar conclusion [15].

3.6 Policy Generator Learning Engine

To adaptively prioritize contending threads, Smartlocks use a Reinforcement
Learning (RL) algorithm which treats the heartbeat as a reward and attempts
to maximize it. From the RL perspective, this presents a number of challenges:
the state space is almost completely unobservable, state transitions are semi-
Markov due to context switches, and the action space is exponentially large.
Because we need an algorithm that is a) fast enough for on-line use and b) can
tolerate severe inobservability, we adopt an average reward optimality criterion
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[17] and use policy gradients to learn a good policy [18]. Policy gradients are
particularly well-suited for a number of reasons, one of which is action selection.
At each update, the RL engine must select a priority ordering of the threads;
n threads and k priority levels means k™ possible actions; other RL algorithms
which require maximization over the action space are intractable.

The goal of policy gradients is to improve a policy by estimating the gradient
of the average reward with respect to the policy parameters. The reward is taken
to be the heartbeat rate, smoothed over a small window of time. Assume that we
have access to some policy 7, parameterized by 0. The average reward of 7(-|0) is
a function of 0: n(6) = E{R} = lim_o 7 St _, 7i, where R is a random variable
representing reward, and r; is a particular reward at time 7. The expectation is
approximated with importance sampling, as follows (we omit the full derivation
in the interests of space):

N
1
Von(0) = VoE{R} ~ N > " riVglogm(a;|0) (1)
i=1

where the sequence of rewards r; is obtained by executing the sequence of actions
a; sampled from 7(+|6).

So far, we have said nothing about the particular form of the policy. We
must address address the combinatorics of the naive action space, construct a
stochastic policy which balances exploration and exploitation, and which can be
smoothly parameterized to enable gradient-based learning.

We address all of these issues with a stochastic soft-max policy. We parame-
terize each thread ¢ with a real valued weight 6;, and then sample a complete pri-
ority ordering over threads — this relaxes a combinatorially large discrete action
space into a continuous policy space. We first sample the highest-priority thread
by sampling from p(a;) = exp{6q, }/ Z;‘L:1 exp{f;} . We then sample the next-
highest priority thread by removing the first thread and renormalizing the pri-
orities. Let S be the set of all threads: p(az|a1) = exp{fa,}/ > cs_ {4y} €xPL0;}-
We repeat this process n — 1 times, until we have sampled a complete set of
priorities. The overall likelihood of the policy is therefore:

& exp{f.,}

m(a) = p(a1)p(az|ar) -+ planlat, -, an_1) = .
(a) = p(a1)p(azlar) - - p(anay n—1) H S o oy D0
The gradient needed in Eq. 1 is easily computed. Let p;; be the probability that
thread ¢ was selected to have priority j, with the convention that p;; = 0 if
the thread has already been selected to have a priority higher than j. Then the

gradient for parameter ¢ is simply Vg, =1 — Ej Dij-

When enough samples are collected (or some other gradient convergence
test passes), we take a step in the gradient direction: 8§ = 6 + aVyn(#), where
« is a step-size parameter. Higher-order policy optimization methods, such as
stochastic conjugate gradients [19] or Natural Actor Critic [20], would also be
possible. Future work could explore these and other agents.
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4 Experimental Results

We now illustrate how how Smartlocks can help solve heterogeneity problems
by applying them to the problem of adapting to the variation in core clock
frequencies caused by thermal throttling.

4.1 Experimental Setup

Our setup emulates an asymmetric multicore with six cores, where core frequen-
cies are drawn from the set {3.16 GHz, 2.11 GHz}. The benchmark is synthetic,
and represents a simple work-pile programming model (without work-stealing).
The app uses pthreads for thread spawning and Smartlocks within the work-pile
data structure. The app is compiled using gcc v.4.3.2. The benchmark uses 5
threads (reserving one for Smartlock use) consisting of the main thread and 4
workers. The main thread generates work while the workers pull work items from
the queue and perform the work; each work item requires a constant number of
cycles to complete. On the asymmetric multicore, workers will, in general, exe-
cute on cores running at different speeds; thus, x cycles on one core may take
more wall-clock time to complete than on another core.

The experiment models an asymmetric multicore but runs on a homogeneous
8-core (dual quad core) Intel Xeon(r) X5460 CPU with 8 GB of DRAM running
Debian Linux kernel version 2.6.26. In hardware, each core runs at its native 3.16
GHz frequency. Linux system tools like cpufrequtils could be used to dynamically
manipulate hardware core frequencies, but our experiment instead models clock
frequency asymmetry using a simpler yet powerful software method: adjusting
the virtual performance of threads by manipulating the number of heartbeats.
At each point where threads would ordinarily issue 1 beat, they instead issue 2 or
3, depending on whether they are emulating a 2.11 GHz or 3.16 GHz core. This
artificially inflates the total heartbeats but preserves the pertinent asymmetry.

The experiment simulates a runtime environment by simulating two thermal-
throttling events which change core speeds. No thread migration is assumed.
Instead, the virtual performance of each thread is adjusted by adjusting heart-
beats. The main thread always runs at 3.16 GHz. At any given time, 1 worker
runs at 3.16 GHz and the others run at 2.11 GHz. The thermal throttling events
change which worker is running at 3.16 GHz. The first event occurs at time 1.4s.
The second occurs at time 2.7s and reverses the first event.

4.2 Results

Figure 6 shows several things. First, it shows the performance of the Smart-
lock against existing reactive lock techniques. At any given time, reactive lock
performance is bounded by the performance of its highest performing inter-
nal algorithm; thus, this experiment models the reactive lock as a write-biased
readers-writer lock (described in Section 2).5 Smartlock is also compared against

5 This is the highest performing algorithm for this problem known to the authors to be
included in a reactive lock implementation.
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Fig. 6: Performance results on thermal throttling experiment. Smartlocks adapt to dif-
ferent workloads; no single static policy is optimal for all of the different conditions.

a baseline Test and Set spin-lock. The number of cycles required to perform each
unit of work has been chosen so that the difference in acquire and release over-
heads between lock algorithms is negligible but so that lock contention is high;
what 4s important is the policy intrinsic to the lock algorithm (and the adap-
tivity of the policy in the case of the Smartlock). Smartlock always outperforms
the write-biased readers-writer lock and the Test and Set lock. This implies that
reactive locks do not achieve optimal performance for this scenario.

The second thing that Figure 6 shows is that there is a gap between reactive
lock performance and optimal theoretical performance. One lock algorithm /
policy that can outperform standard techniques is the priority lock and prior-
itized access. The graph compares two priority locks with hand-coded priority
settings against reactive locks. The first priority lock is optimal for two regions
of the graph: from the beginning to the first throttling event and from the sec-
ond throttling event to the end. Its policy sets the main thread and worker 0
to a high priority value and all other threads to a low priority value (e.g. high
= 2.0, low = 1.0). The second priority lock is optimal for the region of the
graph between the two throttling events; its policy sets the main thread and
worker 3 to a high priority value and all other threads to a low priority value.
Within the appropriate regions, the priority locks outperform the reactive lock,
clearly demonstrating the gap between reactive lock performance and optimal
theoretical performance.

The final thing that Figure 6 illustrates is that Smartlock approaches optimal
performance and readily adapts to the two thermal throttling events. Within
each region of the graph, Smartlock approaches the performance of the two
hand-coded priority lock policies. Performance dips after the throttling events
(time=1.4s and time=2.7s) but improves quickly.

Figure 7 shows the time-evolution of the Smartlock’s internal weights g;.
Initially, threads all have the same weight, implying equal probability of being
selected as high-priority threads. Between time 0 and the first event, Smartlock
learns that the main thread and worker 0 should have higher priority, and uses a
policy very similar to optimal hand-coded one. After the first event, the Smart-
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Fig. 7: Time evolution of weights in the lock acquisition scheduling policy.

lock learns that the priority of worker 0 should be decreased and the priority of
worker 3 increased, again learning a policy similar to the optimal hand-coded
one. After the second event, Smartlock learns a third optimal policy.

5 Conclusion

Smartlocks is a novel open-source synchronization library designed to remove
some of the complexity of writing applications for multicores and asymmetric
multicores. Smartlocks is a self-aware computing technology that adapts itself at
runtime to help applications and system software meet their goals. This paper
introduces a novel adaptation strategy ideal for asymmetric multicores that we
term lock acquisition scheduling and demonstrates empirically that it can be
applied to dynamic frequency variation. The results show that Smartlocks, owing
to lock acquisition scheduling, can significantly outperform conventional locks
and reactive locks, Smartlock’s closest predecessor, on asymmetric multicores.

In the same way that atomic instructions act as building blocks to construct
higher-level synchronization objects, Smartlocks can serve as an adaptive build-
ing block in many contexts, such as operating systems, libraries, system software,
DB / webservers, and managed runtimes. Smartlocks can be applied to problems
such as load-balancing and mitigating thread interference. For example, placing
a Smartlock between applications and each DRAM port could learn an opti-
mal partitioning of DRAM bandwidth; Smartlocks guarding disk accesses could
learn adaptive read/write policies. In general, Smartlocks could mitigate many
thread interference problems by giving applications a share of each resource and
intelligently managing access.

Smartlocks may also be a key component in developing asymmetry-optimized
parallel programming models. One strong candidate is a modification of the
work-pool with work-stealing programming model that maintains the self schedul-
ing property of work-stealing but optimizes by adapting the work-stealing heuris-
tic; this can be accomplished by replacing the lock around the work-pool data
structure and prioritizing access to each thread’s work pool.

Smartlocks are, of course, not a silver bullet, but they do provide a foundation
for many researchers to further investigate possible synergy between multicore
programming and the power of adaptation and machine learning.
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