
JON A THAN EA STEP
DA VID WIN GA TE

MA R CO D. SA N TA M BR OGIO
A N ANT A GA R WA L

Smartlocks: Self-Aware
Synchronization

Multicores are Complex

2

 The good
Get performance scaling back

on track with Moore’s Law

 The Bad
System complexities are

skyrocketing
Difficult to program multicores

and utilize their performance

Asymmetric Multicore is Worse

3

 The Problem
Different capabilities, clock

speeds = new layer of complexity
 Programmers aren’t used to

reasoning about asymmetryAsymmetric Multicore

Core 0

Core 1

Core 2

Core 3

 Why Asymmetric Multicore?
 Improving Power / Performance
 Increasing Manufacturing yield

Self-Aware Computing Can Help

4

A promising recent approach to systems
complexity management

Monitor themselves, adapting as necessary
to meet their goals

 Self-aware systems
Goal-Oriented Computing, Ward et al., CSAIL
 IBM K42 Operating System (OS w/ online reconfig.)
Oracle Automatic Workload Repository (DB tuning)
 Intel RAS Technologies for Enterprise (hw fault tol.)

Smartlocks Overview

5

 Self-Aware technology applied to synchronization,
resource sharing, programming models

 C/C++ spin-lock library for multicore
 Uses heuristics and machine learning to internally

adapt its algorithms / behaviors
 Reward signal provided by application monitor
 Key innovation: Lock Acquisition Scheduling

t1 t3

Lock
Scheduler

Waiters

t2

Lock Acquisition Scheduling is the Key!

6

o Thought experiment: 2 slow cores, 1 fast

improvement
4 CS

4 CS

Talk Outline

7

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Application

Smartlocks Architecture

8

 Each Smartlock self-optimizes as the app runs
o Take reward from application monitoring framework
o Reinforcement Learning adapts lock scheduling policy

Smartlock

Pthreads

Application
Monitor:

Heartbeats

Reward:
Heart Ratelock

ML
sched.

Lock Scheduling
PR LockPriorities

… →

Do Scheduling with PR Locks

 Priority Lock (PR Lock)
 Releases lock to waiters preferentially (ordered by priority)
 Each potential lock holder (thread) has a priority
 To acquire, thread registers in wait priority queue
 Usually priority settings are set statically

9

 Lock Acquisition Scheduling
 Augments PR Lock w/ ML engine to

dynamically control priority settings
 Scheduling policy = the set of thread

priorities

Lock Scheduling
PR LockPriorities

… →
pt0 pt2

pt6

pt8

pt1

pt11

ti = thread i; pti = priority ti

pt1

pt2 pt3

ptn

Talk Outline

10

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Smartlocks Interface

11

 Similar to pthread mutexes
 Difference is interface for external monitor
 Smartlock queries monitor for reward signal

Function Prototype Description
smartlock::smartlock(int max_lockers, monitor *m_ptr) Creates a Smartlock

Smartlock::~smartlock() Destroys a Smartlock

void smartlock::acquire(int id) Acquires the lock

void smartlock::release(int id) Releases the lock

Talk Outline

12

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Smartlocks Design Challenges

 Major Scheduling Challenges
The Timeliness Challenge

Scheduling too slowly could negate benefit of scheduling
Where do you get compute resources to optimize?

The Quality Challenge
Finding policies with best long-term effects
 No model of system to guide direct optimization methods

Efficiently searching an exponential policy space
Overcoming stochastic / partially observable dynamics

13

Meeting The Timeliness Challenge

14

 Run adaptation algorithms in decoupled helper thread
 Relax scheduling frequency to once every few locks
 For efficiency, use PR locks as scheduling mechanism
 ML engine updates priorities; PR lock runs decoupled

Meeting the Quality Challenge

 Machine Learning, Reinforcement Learning
 Need not know *how* to accomplish task just *when* you have
 Good at learning actions that maximize long-term benefit
 Natural for application engineers to construct reward signal
 Addresses issues like stochastic / partially observable dynamics

 Policy Gradients
 Computationally cheap, fast, and straightforward to implement
 Need no model of the system (we don’t have one!)

 Stochastic Soft-Max Policy
 Relaxes exponential discrete action space into differentiable one
 Effective, natural way to balance exploration vs. exploitation

15

The RL Problem Formulation

16

 Goal: learn a policy π(action | θ)
 Action= PR lock priority settings (exponential space)

k priorities levels, n threads → kn possible priority settings
 θ are learned parameters
 Reward is e.g. heart rate smoothed over small window
 Thus π is a distribution over thread prioritizations
 At each timestep, we sample and execute a prioritization

 Optimization objective: average reward η
 Depends on the policy, which depends on θ

maximize

Use Policy Gradients Approach

17

Approach: policy gradients
 Idea: estimate the gradient of average reward η

with respect to policy parameters θ
Approximate with importance sampling

Take a step in the gradient direction

Talk Outline

18

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Experimental Setup 1

19

Simulated 6-core single-ISA asymmetric
multicore w/ dynamic clock speeds

Throughput benchmark
Work-pile programming model (no stealing)
1 producer, 4 workers
Record how long to perform n total work items
Fast cores finish work faster; if they spin it’s bad

Two thermal Throttling Events

Performance as a Function of Time

20

 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0

0.6

0.8

1

1.2

1.4

1.6
x 106

Time (seconds)H e a r t r a t e (b e a t s p e r s e c o n d / 1 e 6)

Optimal

Smartlock

Priority lock: policy 1

Priority lock: policy 2

Spin!lock: Reactive Lock

Spin!Lock: Test and Set

Workload #1 Workload #2 Workload #1

gap

best w/ pri.
Smartlock

best w/o pri.
TAS

adaptation time-scale

Policy as a Learned Function of Time

21

 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0
 10

 5

0

5

10

Time!(seconds)

T h r e a d ! p r i o r i t y ! w e i g h t s !

i

Main!thread
Worker!0
Worker!1
Worker!2
Worker!3

Workload!#1 Workload!#2 Workload!#1

Policy as a Learned Function of Time

Experimental Setup 2

22

Hardware asymmetry using cpufrequtils
8-core Intel Xeon machine
 {2.11,2.11,2.11,2.11,2.11,2.11,3.16,3.16} GHz
 1 core reserved for Machine Learning (not

required: helper thread could share a core)
Splash2
First results: Radiosity
Computes equilibrium dist. of light in scene
Parallelism via work queues with stealing
Work items imbalanced (function of input scene)
Heartbeat for every work item completed

Radiosity Performance vs. Policy

23

 Benchmark
 Study how lock scheduling

affects performance
 ~20% difference between

best and worst policy
 TAS (uniformly random)

is in the middle
 Smartlock within 3% of

best policy

Radiosity (lower is better)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Smartlocks

Smartlocks is Bigger Than This

24

 Smartlock adapts each aspect of a lock
 Protocol: picks from {TAS,TASEB,Ticket,MCS,PR Lock}
 Wait Strategy: picks from {spin, spin with backoff}
 Scheduling Policy: arbitrary, optimized by RL engine

 Smartlocks has an adaptation component for each
 This talk focuses on Lock Acquisition Scheduler

Smartlock

Protocol
Selector

Lock Acquisition
Scheduler

Wait Strategy
Selector

Application
Monitor

Conclusion

25

 Smartlocks is a self-aware software library for
synchronization / resource-sharing

 Ideal for multicores / applications with
dynamic asymmetry

 Lock Acquisition Scheduling is the key
innovation

 Smartlocks is open source (COMING SOON!)
 Code: http://github.com/Smartlocks/Smartlocks
 Project web-page:

https://groups.csail.mit.edu/carbon/smartlocks

http://github.com/Smartlocks/Smartlocks�
https://groups.csail.mit.edu/carbon/smartlocks�

	Smartlocks: Self-Aware Synchronization
	Multicores are Complex
	Asymmetric Multicore is Worse
	Self-Aware Computing Can Help
	Smartlocks Overview
	Lock Acquisition Scheduling is the Key!
	Talk Outline
	Smartlocks Architecture
	Do Scheduling with PR Locks
	Talk Outline
	Smartlocks Interface
	Talk Outline
	Smartlocks Design Challenges
	Meeting The Timeliness Challenge
	Meeting the Quality Challenge
	The RL Problem Formulation
	Use Policy Gradients Approach
	Talk Outline
	Experimental Setup 1
	Performance as a Function of Time
	Policy as a Learned Function of Time
	Experimental Setup 2
	Radiosity Performance vs. Policy
	Smartlocks is Bigger Than This
	Conclusion

