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Multicores are Complex
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 The good
Get performance scaling back 

on track with Moore’s Law

 The Bad
System complexities are 

skyrocketing
Difficult to program multicores 

and utilize their performance



Asymmetric Multicore is Worse
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 The Problem
Different capabilities, clock 

speeds = new layer of complexity
 Programmers aren’t used to 

reasoning about asymmetryAsymmetric Multicore

Core 0

Core 1

Core 2

Core 3

 Why Asymmetric Multicore?
 Improving Power / Performance
 Increasing Manufacturing yield



Self-Aware Computing Can Help
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A promising recent approach to systems 
complexity management

Monitor themselves, adapting as necessary 
to meet their goals

 Self-aware systems
Goal-Oriented Computing, Ward et al., CSAIL
 IBM K42 Operating System (OS w/ online reconfig.)
Oracle Automatic Workload Repository (DB tuning)
 Intel RAS Technologies for Enterprise (hw fault tol.)



Smartlocks Overview
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 Self-Aware technology applied to synchronization, 
resource sharing, programming models

 C/C++ spin-lock library for multicore
 Uses heuristics and machine learning to internally 

adapt its algorithms / behaviors
 Reward signal provided by application monitor
 Key innovation: Lock Acquisition Scheduling

t1 t3

Lock 
Scheduler

Waiters

t2



Lock Acquisition Scheduling is the Key!
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o Thought experiment: 2 slow cores, 1 fast

improvement
4 CS

4 CS



Talk Outline
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Motivation
 Smartlocks Architecture 
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion



Application

Smartlocks Architecture
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 Each Smartlock self-optimizes as the app runs
o Take reward from application monitoring framework
o Reinforcement Learning adapts lock scheduling policy

Smartlock

Pthreads

Application 
Monitor: 

Heartbeats

Reward: 
Heart Ratelock

ML
sched.

Lock Scheduling
PR LockPriorities

… →



Do Scheduling with PR Locks

 Priority Lock (PR Lock)
 Releases lock to waiters preferentially (ordered by priority) 
 Each potential lock holder (thread) has a priority 
 To acquire, thread registers in wait priority queue
 Usually priority settings are set statically
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 Lock Acquisition Scheduling
 Augments PR Lock w/ ML engine to 

dynamically control priority settings
 Scheduling policy =  the set of thread 

priorities

Lock Scheduling
PR LockPriorities

… →
pt0 pt2

pt6

pt8

pt1

pt11

ti = thread i;  pti = priority ti

pt1

pt2 pt3

ptn
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Smartlocks Interface
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 Similar to pthread mutexes
 Difference is interface for external monitor
 Smartlock queries monitor for reward signal

Function Prototype Description
smartlock::smartlock(int max_lockers, monitor *m_ptr) Creates a Smartlock

Smartlock::~smartlock() Destroys a Smartlock

void smartlock::acquire(int id) Acquires the lock

void smartlock::release(int id) Releases the lock
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Smartlocks Design Challenges

 Major Scheduling Challenges
The Timeliness Challenge

Scheduling too slowly could negate benefit of scheduling
Where do you get compute resources to optimize?

The Quality Challenge
Finding policies with best long-term effects
 No model of system to guide direct optimization methods

Efficiently searching an exponential policy space
Overcoming stochastic / partially observable dynamics
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Meeting The Timeliness Challenge
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 Run adaptation algorithms in decoupled helper thread
 Relax scheduling  frequency to once every few locks
 For efficiency, use PR locks as scheduling mechanism
 ML engine updates priorities; PR lock runs decoupled



Meeting the Quality Challenge

 Machine Learning, Reinforcement Learning
 Need not know *how* to accomplish task just *when* you have
 Good at learning actions that maximize long-term benefit
 Natural for application engineers to construct reward signal
 Addresses issues like stochastic / partially observable dynamics 

 Policy Gradients
 Computationally cheap, fast, and straightforward to implement
 Need no model of the system (we don’t have one!)

 Stochastic Soft-Max Policy
 Relaxes exponential discrete action space into differentiable one
 Effective, natural way to balance exploration vs. exploitation
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The RL Problem Formulation
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 Goal: learn a policy π(action | θ)
 Action= PR lock priority settings (exponential space)

k priorities levels, n threads → kn possible priority settings
 θ are learned parameters
 Reward is e.g. heart rate smoothed over small window
 Thus π is a distribution over thread prioritizations
 At each timestep, we sample and execute a prioritization

 Optimization objective: average reward η
 Depends on the policy, which depends on θ

maximize



Use Policy Gradients Approach
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Approach: policy gradients
 Idea: estimate the gradient of average reward η

with respect to policy parameters  θ
Approximate with importance sampling

Take a step in the gradient direction
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Experimental Setup 1
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Simulated 6-core single-ISA asymmetric 
multicore w/ dynamic clock speeds

Throughput benchmark
Work-pile programming model (no stealing)
1 producer, 4 workers
Record how long to perform n total work items
Fast cores finish work faster; if they spin it’s bad

Two thermal Throttling Events



Performance as a Function of Time
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 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1
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Policy as a Learned Function of Time
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 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1
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Experimental Setup 2
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Hardware asymmetry using cpufrequtils
8-core Intel Xeon machine 
 {2.11,2.11,2.11,2.11,2.11,2.11,3.16,3.16} GHz
 1 core reserved for Machine Learning (not 

required: helper thread could share a core)
Splash2
First results: Radiosity
Computes equilibrium dist. of light in scene
Parallelism via work queues with stealing
Work items imbalanced (function of input scene)
Heartbeat for every work item completed



Radiosity Performance vs. Policy
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 Benchmark
 Study how lock scheduling 

affects performance 
 ~20% difference between 

best and worst policy
 TAS (uniformly random) 

is in the middle
 Smartlock within 3% of 

best policy

Radiosity (lower is better)
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Smartlocks is Bigger Than This
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 Smartlock adapts each aspect of a lock
 Protocol: picks from {TAS,TASEB,Ticket,MCS,PR Lock}
 Wait Strategy: picks from {spin, spin with backoff}
 Scheduling Policy: arbitrary, optimized by RL engine

 Smartlocks has an adaptation component for each
 This talk focuses on Lock Acquisition Scheduler

Smartlock

Protocol 
Selector

Lock Acquisition 
Scheduler

Wait Strategy 
Selector

Application 
Monitor



Conclusion
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 Smartlocks is a self-aware software library for 
synchronization / resource-sharing

 Ideal for multicores / applications with 
dynamic asymmetry

 Lock Acquisition Scheduling is the key 
innovation

 Smartlocks is open source (COMING SOON!)
 Code: http://github.com/Smartlocks/Smartlocks
 Project web-page: 

https://groups.csail.mit.edu/carbon/smartlocks

http://github.com/Smartlocks/Smartlocks�
https://groups.csail.mit.edu/carbon/smartlocks�
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