
JON A THAN EA STEP
DA VID WIN GA TE

MA R CO D. SA N TA M BR OGIO
A N ANT A GA R WA L

Smartlocks: Self-Aware
Synchronization

Multicores are Complex

2

 The good
Get performance scaling back

on track with Moore’s Law

 The Bad
System complexities are

skyrocketing
Difficult to program multicores

and utilize their performance

Asymmetric Multicore is Worse

3

 The Problem
Different capabilities, clock

speeds = new layer of complexity
 Programmers aren’t used to

reasoning about asymmetryAsymmetric Multicore

Core 0

Core 1

Core 2

Core 3

 Why Asymmetric Multicore?
 Improving Power / Performance
 Increasing Manufacturing yield

Self-Aware Computing Can Help

4

A promising recent approach to systems
complexity management

Monitor themselves, adapting as necessary
to meet their goals

 Self-aware systems
Goal-Oriented Computing, Ward et al., CSAIL
 IBM K42 Operating System (OS w/ online reconfig.)
Oracle Automatic Workload Repository (DB tuning)
 Intel RAS Technologies for Enterprise (hw fault tol.)

Smartlocks Overview

5

 Self-Aware technology applied to synchronization,
resource sharing, programming models

 C/C++ spin-lock library for multicore
 Uses heuristics and machine learning to internally

adapt its algorithms / behaviors
 Reward signal provided by application monitor
 Key innovation: Lock Acquisition Scheduling

t1 t3

Lock
Scheduler

Waiters

t2

Lock Acquisition Scheduling is the Key!

6

o Thought experiment: 2 slow cores, 1 fast

improvement
4 CS

4 CS

Talk Outline

7

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Application

Smartlocks Architecture

8

 Each Smartlock self-optimizes as the app runs
o Take reward from application monitoring framework
o Reinforcement Learning adapts lock scheduling policy

Smartlock

Pthreads

Application
Monitor:

Heartbeats

Reward:
Heart Ratelock

ML
sched.

Lock Scheduling
PR LockPriorities

… →

Do Scheduling with PR Locks

 Priority Lock (PR Lock)
 Releases lock to waiters preferentially (ordered by priority)
 Each potential lock holder (thread) has a priority
 To acquire, thread registers in wait priority queue
 Usually priority settings are set statically

9

 Lock Acquisition Scheduling
 Augments PR Lock w/ ML engine to

dynamically control priority settings
 Scheduling policy = the set of thread

priorities

Lock Scheduling
PR LockPriorities

… →
pt0 pt2

pt6

pt8

pt1

pt11

ti = thread i; pti = priority ti

pt1

pt2 pt3

ptn

Talk Outline

10

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Smartlocks Interface

11

 Similar to pthread mutexes
 Difference is interface for external monitor
 Smartlock queries monitor for reward signal

Function Prototype Description
smartlock::smartlock(int max_lockers, monitor *m_ptr) Creates a Smartlock

Smartlock::~smartlock() Destroys a Smartlock

void smartlock::acquire(int id) Acquires the lock

void smartlock::release(int id) Releases the lock

Talk Outline

12

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Smartlocks Design Challenges

 Major Scheduling Challenges
The Timeliness Challenge

Scheduling too slowly could negate benefit of scheduling
Where do you get compute resources to optimize?

The Quality Challenge
Finding policies with best long-term effects
 No model of system to guide direct optimization methods

Efficiently searching an exponential policy space
Overcoming stochastic / partially observable dynamics

13

Meeting The Timeliness Challenge

14

 Run adaptation algorithms in decoupled helper thread
 Relax scheduling frequency to once every few locks
 For efficiency, use PR locks as scheduling mechanism
 ML engine updates priorities; PR lock runs decoupled

Meeting the Quality Challenge

 Machine Learning, Reinforcement Learning
 Need not know *how* to accomplish task just *when* you have
 Good at learning actions that maximize long-term benefit
 Natural for application engineers to construct reward signal
 Addresses issues like stochastic / partially observable dynamics

 Policy Gradients
 Computationally cheap, fast, and straightforward to implement
 Need no model of the system (we don’t have one!)

 Stochastic Soft-Max Policy
 Relaxes exponential discrete action space into differentiable one
 Effective, natural way to balance exploration vs. exploitation

15

The RL Problem Formulation

16

 Goal: learn a policy π(action | θ)
 Action= PR lock priority settings (exponential space)

k priorities levels, n threads → kn possible priority settings
 θ are learned parameters
 Reward is e.g. heart rate smoothed over small window
 Thus π is a distribution over thread prioritizations
 At each timestep, we sample and execute a prioritization

 Optimization objective: average reward η
 Depends on the policy, which depends on θ

maximize

Use Policy Gradients Approach

17

Approach: policy gradients
 Idea: estimate the gradient of average reward η

with respect to policy parameters θ
Approximate with importance sampling

Take a step in the gradient direction

Talk Outline

18

Motivation
 Smartlocks Architecture
 Smartlocks Interface
 Smartlock Design
Results
 Conclusion

Experimental Setup 1

19

Simulated 6-core single-ISA asymmetric
multicore w/ dynamic clock speeds

Throughput benchmark
Work-pile programming model (no stealing)
1 producer, 4 workers
Record how long to perform n total work items
Fast cores finish work faster; if they spin it’s bad

Two thermal Throttling Events

Performance as a Function of Time

20

 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0

0.6

0.8

1

1.2

1.4

1.6
x 106

Time (seconds)H e a r t r a t e (b e a t s p e r s e c o n d / 1 e 6)

Optimal

Smartlock

Priority lock: policy 1

Priority lock: policy 2

Spin!lock: Reactive Lock

Spin!Lock: Test and Set

Workload #1 Workload #2 Workload #1

gap

best w/ pri.
Smartlock

best w/o pri.
TAS

adaptation time-scale

Policy as a Learned Function of Time

21

 Workload 1: Worker 0 @ 3.16GHz, others @ 2.11GHz
 Workload 2: Worker 3 @ 3.16GHz, others @ 2.11GHz
 Workload 3: Same as Workload 1

0.0 0.3 0.6 1.0 1.3 1.6 2.0 2.3 2.6 3.0 3.3 3.6 4.0
 10

 5

0

5

10

Time!(seconds)

T h r e a d ! p r i o r i t y ! w e i g h t s !

i

Main!thread
Worker!0
Worker!1
Worker!2
Worker!3

Workload!#1 Workload!#2 Workload!#1

Policy as a Learned Function of Time

Experimental Setup 2

22

Hardware asymmetry using cpufrequtils
8-core Intel Xeon machine
 {2.11,2.11,2.11,2.11,2.11,2.11,3.16,3.16} GHz
 1 core reserved for Machine Learning (not

required: helper thread could share a core)
Splash2
First results: Radiosity
Computes equilibrium dist. of light in scene
Parallelism via work queues with stealing
Work items imbalanced (function of input scene)
Heartbeat for every work item completed

Radiosity Performance vs. Policy

23

 Benchmark
 Study how lock scheduling

affects performance
 ~20% difference between

best and worst policy
 TAS (uniformly random)

is in the middle
 Smartlock within 3% of

best policy

Radiosity (lower is better)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Smartlocks

Smartlocks is Bigger Than This

24

 Smartlock adapts each aspect of a lock
 Protocol: picks from {TAS,TASEB,Ticket,MCS,PR Lock}
 Wait Strategy: picks from {spin, spin with backoff}
 Scheduling Policy: arbitrary, optimized by RL engine

 Smartlocks has an adaptation component for each
 This talk focuses on Lock Acquisition Scheduler

Smartlock

Protocol
Selector

Lock Acquisition
Scheduler

Wait Strategy
Selector

Application
Monitor

Conclusion

25

 Smartlocks is a self-aware software library for
synchronization / resource-sharing

 Ideal for multicores / applications with
dynamic asymmetry

 Lock Acquisition Scheduling is the key
innovation

 Smartlocks is open source (COMING SOON!)
 Code: http://github.com/Smartlocks/Smartlocks
 Project web-page:

https://groups.csail.mit.edu/carbon/smartlocks

http://github.com/Smartlocks/Smartlocks�
https://groups.csail.mit.edu/carbon/smartlocks�

	Smartlocks: Self-Aware Synchronization
	Multicores are Complex
	Asymmetric Multicore is Worse
	Self-Aware Computing Can Help
	Smartlocks Overview
	Lock Acquisition Scheduling is the Key!
	Talk Outline
	Smartlocks Architecture
	Do Scheduling with PR Locks
	Talk Outline
	Smartlocks Interface
	Talk Outline
	Smartlocks Design Challenges
	Meeting The Timeliness Challenge
	Meeting the Quality Challenge
	The RL Problem Formulation
	Use Policy Gradients Approach
	Talk Outline
	Experimental Setup 1
	Performance as a Function of Time
	Policy as a Learned Function of Time
	Experimental Setup 2
	Radiosity Performance vs. Policy
	Smartlocks is Bigger Than This
	Conclusion

