
Static Java Program Features
for Intelligent Squash

Prediction

Jeremy Singer, Paraskevas Yiapanis,

Adam Pocock, Mikel Lujan, Gavin Brown,

Nikolas Ioannou, Marcelo Cintra

Paraskevas Yiapanis

Thread-level Speculation...

• Aim to use parallel multi-core resources in
execution of sequential program

• Assume low likelihood for certain data dependence
conflicts, and parallelize accordingly

• Runtime safety mechanisms to detect conflict and
roll-back

1

Paraskevas Yiapanis

Our TLS Model

• Method-level speculation: at a method call site,
execute the callee method (non-speculative) in
parallel with the caller continuation (speculative)

2

Paraskevas Yiapanis

Method – Level Speculation

3

Paraskevas Yiapanis

Method – Level Speculation

4

Paraskevas Yiapanis

Method – Level Speculation

Non –
speculative

thread

Time

5

Paraskevas Yiapanis

Method – Level Speculation

Time

6

Non –
speculative

thread

Paraskevas Yiapanis

Method – Level Speculation

7

Time

method
call

Non –
speculative

thread

Paraskevas Yiapanis

Method – Level Speculation

8

Time Non –
speculative

thread

Paraskevas Yiapanis

Method – Level Speculation

9

Time

spawn

Non –
speculative

thread

Paraskevas Yiapanis

Method – Level Speculation

10

Time

Speculative
thread

Non –
speculative

thread

Paraskevas Yiapanis

Method – level Speculation

11

Non –
specula

tive
thread

Speculative
thread

Data
dependence

violation

Squash!
Speculative

thread

Restart
Speculative

thread

Time

Non – speculative
thread continues

Finish
execution

Commit
results

Commit
results

Paraskevas Yiapanis

Particular Problem:
Squash Prediction

Squashes (caused by data dependence conflicts
at runtime) are expensive

• Runtime overhead of rollback / re-execution

• Wasted parallel resource that could be used for executing
alternative parallel threads without conflicts

Ideally, we could predict squashes ahead-of-
time, and avoid spawning conflicting threads

12

Paraskevas Yiapanis

Data Collection

Characterize two Java methods (caller and
callee) using standard metrics - features

Execute these two methods in parallel and
determine whether there is a data dependence
violation - class

Store the vector of features, and the class as a
row in the learning database - example

13

Paraskevas Yiapanis

Java Method Features

• All static characteristics of methods

• 23 real-valued features from the
MILEPOST gcc compiler
– e.g. Number of CFG basic blocks with more than 2

successors

• 22 binary features from our nano-pattern
catalogue
– e.g. method may write value to an array

• For each potential TLS spawn, we have 90
features (45 caller + 45 callee)

14

Paraskevas Yiapanis

TLS Emulation Infrastructure

• Java benchmarks (SPECjvm98 / DaCapo)

• On top of instrumented Jikes RVM
– record method entry/exit, memory read/write

• On top of Simics full-system simulator

• Generate sequential execution trace files with
timings

• Feed into custom trace-based TLS emulator

15

Paraskevas Yiapanis

TLS Execution Parameters

• Method-level speculation

• Spawn on all methods longer than threshold
runlength

• Parameterizable costs for TLS
spawn/commit/squash events

• 2 cores, so maximum of 1 in-flight speculation

• This is the simplest scenario for learning

16

Paraskevas Yiapanis

Learning Technique

• Generate a set of rules, using decision tree
learner (C5.0 algorithm)

• Order rules based on confidence (accuracy)

• Only consider rules above threshold
confidence

• example rule:

17

Paraskevas Yiapanis

Learning Technique

• Generate a set of rules, using decision tree
learner (C5.0 algorithm)

• Order rules based on confidence (accuracy)

• Only consider rules above threshold
confidence

• example rule:

if noparams = 1

and arrReader = 1

and objCreator' = 0

and thisInstanceFieldWriter' = 0

and methodInstrNum' <= 136

18

Paraskevas Yiapanis

Learning Technique

• Generate a set of rules, using decision tree
learner (C5.0 algorithm)

• Order rules based on confidence (accuracy)

• Only consider rules above threshold
confidence

• example rule:

if noparams = 1

and arrReader = 1

and objCreator' = 0

and thisInstanceFieldWriter' = 0

and methodInstrNum' <= 136

19

Squash!

Paraskevas Yiapanis

Application of Rule-Sets

leave-one-out cross-validation:

• learn rules one a set of Java benchmarks (training set)

• apply these rules on a different benchmark (testing set)

20

Paraskevas Yiapanis

Evaluation

Three thread-spawning strategies

• no prediction (spawn for all methods above threshold
runlength)

• profile-based spawning (spawn for call-sites where majority
of spawns committed successfully, on profile run of that
benchmark)

• rules-based spawning (for each benchmark, spawn where
rules predict no squash, based on LOOCV)

21

Paraskevas Yiapanis

Results

22

Paraskevas Yiapanis

Observations (1)

In all cases, profile-based spawning gives best
results

Is it feasible to learn TLS behaviour on one
benchmark, then expect to be able to apply it to
another benchmark?
– Yes, because of shared library / runtime code
– Yes, because of standard object-oriented design patterns

23

Paraskevas Yiapanis

Observations (2)

In 2 cases, jess and jack, rules-based spawning
is comparable with profile-based.

In 2 cases, raytrace and pmd, rules-based
spawning is much worse than the other policies.

24

Paraskevas Yiapanis

Observations (3)

Our rules-based squash prediction works well
when there is a relatively high level of data
dependences
– true for jess and jack

When there are few data dependences, rules-
based prediction suffers from a high false
positive rate (predicted squashes that would
actually commit ok) inhibiting actual
parallelism
– true for raytrace and pmd

We should tweak parameters for the learning
algorithm to reduce the false positive rate.

25

Paraskevas Yiapanis

Conclusions

Static characteristics may provide useful
features for learning about Java methods

Some further steps need to be taken to improve
squash prediction using ML

26

Paraskevas Yiapanis

Next steps...

A better feature set is needed (incorporate
dynamic characteristics of methods)

A larger training set is needed (more, and more
diverse Java benchmarks for learning)

Perhaps rephrase the learning problem to give
scope for better speedups (loop-level
speculation?)

27

