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Thread-level Speculation...

• Aim to use parallel multi-core resources in    
execution of sequential program

• Assume low likelihood for certain data dependence 
conflicts, and parallelize accordingly

• Runtime safety mechanisms to detect conflict and 
roll-back
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Our TLS Model

• Method-level speculation: at a method call site, 
execute the callee method (non-speculative) in 
parallel with the caller continuation (speculative)
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Method – Level Speculation
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Method – level Speculation
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Particular Problem:
Squash Prediction

Squashes (caused by data dependence conflicts 
at runtime) are expensive

• Runtime overhead of rollback / re-execution

• Wasted parallel resource that could be used for executing 
alternative parallel threads without conflicts

Ideally, we could predict squashes ahead-of-
time, and avoid spawning conflicting threads
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Data Collection

Characterize two Java methods (caller and 
callee) using standard metrics - features

Execute these two methods in parallel and 
determine whether there is a data dependence 
violation  - class

Store the vector of features, and the class as a 
row in the learning database - example
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Java Method Features

• All static characteristics of methods

• 23 real-valued features from the         
MILEPOST gcc compiler
– e.g. Number of CFG basic blocks with more than 2 

successors

• 22 binary features from our nano-pattern 
catalogue
– e.g. method may write value to an array

• For each potential TLS spawn, we have 90 
features (45 caller + 45 callee)
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TLS Emulation Infrastructure

• Java benchmarks (SPECjvm98 / DaCapo)

• On top of instrumented Jikes RVM
– record method entry/exit, memory read/write

• On top of Simics full-system simulator

• Generate sequential execution trace files with 
timings

• Feed into custom trace-based TLS emulator
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TLS Execution Parameters

• Method-level speculation

• Spawn on all methods longer than threshold 
runlength

• Parameterizable costs for TLS 
spawn/commit/squash events

• 2 cores, so maximum of 1 in-flight speculation

• This is the simplest scenario for learning
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Learning Technique

• Generate a set of rules, using decision tree 
learner (C5.0 algorithm)

• Order rules based on confidence (accuracy)

• Only consider rules above threshold 
confidence

• example rule:
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if noparams = 1

and arrReader = 1

and objCreator' = 0

and thisInstanceFieldWriter' = 0

and methodInstrNum' <= 136
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Application of Rule-Sets

leave-one-out cross-validation:

• learn rules one a set of Java benchmarks (training set)

• apply these rules on a different benchmark (testing set)
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Evaluation

Three thread-spawning strategies

• no prediction (spawn for all methods above threshold 
runlength)

• profile-based spawning (spawn for call-sites where majority 
of spawns committed successfully, on profile run of that 
benchmark)

• rules-based spawning (for each benchmark, spawn where 
rules predict no squash, based on LOOCV)
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Results
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Observations (1)

In all cases, profile-based spawning gives best 
results

Is it feasible to learn TLS behaviour on one 
benchmark, then expect to be able to apply it to 
another benchmark?
– Yes, because of shared library / runtime code
– Yes, because of standard object-oriented design patterns
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Observations (2)

In 2 cases, jess and jack, rules-based spawning 
is comparable with profile-based.

In 2 cases, raytrace and pmd, rules-based 
spawning is much worse than the other policies.
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Observations (3)

Our rules-based squash prediction works well 
when there is a relatively high level of data 
dependences
– true for jess and jack

When there are few data dependences, rules-
based prediction suffers from a high false 
positive rate (predicted squashes that would 
actually commit ok) inhibiting actual 
parallelism
– true for raytrace and pmd

We should tweak parameters for the learning 
algorithm to reduce the false positive rate. 
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Conclusions

Static characteristics may provide useful 
features for learning about Java methods

Some further steps need to be taken to improve 
squash prediction using ML
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Next steps...

A better feature set is needed (incorporate 
dynamic characteristics of methods)

A larger training set is needed (more, and more 
diverse Java benchmarks for learning)

Perhaps rephrase the learning problem to give 
scope for better speedups (loop-level 
speculation?)
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