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Abstract. This paper presents a framework that significantly reduces
the time required for automatically applying empirical tuning to improve
the performance of large scientific applications, where the overall perfor-
mance is often critically determined by a small number of individual
routines that are either repetitively invoked or include a large number
of loop iterations. Our framework allows these critical routines to be
evaluated separately from their original applications by automatically
generating timing drivers that accurately replicate their execution envi-
ronment from within the whole applications. We have explored several
alternatives to precisely simulate the input parameters, cache states of
machines, and working environment of critical routines from both AT-
LAS and SPEC2006. Our experiments show that our timing drivers can
accurately replicate the performance of these routines when invoked di-
rectly within whole applications, while reducing the time required to
tune these routines by multiple orders of magnitude.

1 Introduction

In recent years, empirical tuning [9, 2, 4, 18, 19, 8, 11] has become a de facto ap-
proach that both developers and optimizing compilers adopt to extract high
performance for scientific applications on a wide variety of modern computing
platforms. However, since auto-tuning typically requires differently optimized
code to be recompiled and re-executed hundreds or even thousands of times,
the cost of experimentally evaluating a large optimization space could be pro-
hibitive, especially for large scientific applications that take minutes or even
hours to complete each run. In particular, for one of the SPEC2006 applica-
tions, we have found the time required to run the entire application is more
than 175, 000 times longer than evaluating the routine of interest independently.
It is therefore critically important to reduce the cost of each empirical evalua-
tion of the optimized code, so that a sufficiently large optimization space can be
explored to identify the desirable optimization configurations.

⋆ This research is supported by the National Science Foundation under grant No.
CCF-0833203, CCF-0747357, and CNS-0551504.
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Fig. 1: The Timer Generation Framework.

We present a framework that significantly reduces the time required to empir-
ically evaluate the performance of differently optimized code. Our framework is
based on the observation that large scientific applications often critically depend
on a few computationally intensive routines that are either invoked numerous
times by the application and/or include a significant number of loop iterations.
Since these routines are often chosen as the target of empirical performance
tuning, the tuning time can be greatly reduced by separately studying the per-
formance of an individual routine independent of the original application. Our
experimental results show multiple orders of magnitude speedup in execution
time when collecting performance feedback of a routine using an independent
timing driver instead of instrumenting the whole application.

Separately studying the performance of individual routines requires a tim-
ing driver that 1)invokes the routine with an appropriate execution environ-
ment and 2)accurately reports the performance of each invocation. Whaley and
Castaldo [17] showed that the measured performance could be seriously skewed
when the runtime state of the system, especially caches, is not properly con-
trolled by the timer before calling the routine. Unless the measured performance
of the routine accurately reflects its expected performance when invoked directly
within the whole application, the feedback could mislead the auto-tuning system
into producing sub-optimal code.

Our framework automatically generates independent timing drivers that em-
ploy several approaches to precisely simulate the input parameters, cache states
of machines, and working environment of individual routines so that their per-
formance accurately matches those observed when instrumenting the original
application. In particular, after identifying an individual routine to be tuned
from within a large application, the work flow of our framework is shown in Fig-
ure 1. The framework starts with an instrumentation library which is invoked in a
profiling run of the whole application to collect details of the routine’s execution
environment. The profiling result is then used to produce a routine specification,
which is then used as input to a POET (Parameterized Optimizations for Em-
pirical Tuning) [20] code generator to automatically produce a timing driver.
The timing driver can then be compiled and repetitively used in the iterative
performance tuning process, where every time a differently optimized code is
generated for the routine, the routine implementation is compiled and linked
with the timing driver to produce an executable (i.e., the timer), which mea-
sures the performance of the routine implementation on the targeted machine
and reports performance back to the tuning system.



Our framework currently requires manual user intervention to profile the
application and to write the routine specification after profiling. However, it
provides a complete instrumentation library to collect the routine’s execution
environment (i.e., all the information required to write a routine specification)
and provides a general-purpose code generator to automatically produce a re-
configurable implementation of the timing driver. Additionally, our framework
provides a library that uses automatic application checkpointing[5] to control the
execution environment of routines that are data-sensitive (e.g., an array sorting
algorithm or a pointing chasing algorithm). We show that by checkpointing sev-
eral instructions or iterations before invoking the routine of interest, the accuracy
of timing results can be greatly improved.

We have applied our framework to tune several routines from ATLAS and
SPEC2006. Our experiments show that our framework can accurately replicate
the performance of these routines when invoked directly within whole applica-
tions, while significantly reducing the time required to tune these routines.

2 Related Work

Whaley and Castaldo [17] explored methods for achieving accurate and context-
sensitive timing for code optimization. We have automated the generation of
context-sensitive timers and have investigated both the efficiency and effective-
ness of such timers in replicating the expected performance of routines invoked
within applications. Apart from [17], the literature dedicated to accurately mea-
suring performance has been limited to benchmarking systems [6, 13, 22].

The automatically generated timers presented in this paper can be inte-
grated within a large body of existing auto-tuning frameworks, including many
general-purpose iterative compilation frameworks [9, 1, 3, 11, 14, 19], and a large
number of domain-specific tuning systems, e.g., ATLAS [18, 17], SPIRAL [10,
8], FFTW [4], PHiPAC [2], OSKI [15], and X-Ray [22], to provide performance
feedback for the routines being optimized. The timers employed in ATLAS [16]
are used in our research as a baseline for comparison.

When used to measure performance, most profiling systems, such as HPC-
Toolkit [7], need to evaluate the entire application even when the performance of
only a single routine is required. In contrast, our framework supports the timing
of routines independent of their original applications. We use profiling only to
collect the execution environment of routines.

Our application checkpointing approach (see Section 3.2) follows that docu-
mented in the ROSE compiler [12]. We have additionally introduced a delayed
checkpointing approach that increases the accuracy of obtained timings.

3 Profiling Performance of Applications

The challenge faced when timing routines independently of their applications
is ensuring that appropriate input values and operand workspaces are provided
when invoking the routine. In particular, the supplied values should not result



in abnormal execution (e.g., exceptions, segmentation faults) and should reflect
the common usage pattern of the routine.

We have developed an instrumentation library to collect information on the
common usage patterns (as well as the performance) of routines when invoked
within an application. We separate these routines into two rough categories. The
first category of routines is data insensitive; that is, the amount of computation
within the routine is determined by a few integer parameters controlling problem
size, but is not noticeably affected by the particular values stored in the input
data structures. An example of such routines is dense matrix multiplication.
The second category includes routines that are much more data sensitive, e.g., a
sorting algorithm whose performance is largely determined by the specific data
values being operated upon, as the algorithm may exit immediately after finding
out the data are already sorted. Other examples include complex pointer-chasing
algorithms whose input can only be roughly approximated.

Based on whether the routine of interest is data sensitive, we use different ap-
proaches to simulate its execution environment. In particular, for data-insensitive
routines (e.g., matrix multiply), our default timer recreates their performance
by reproducing the same array sizes, initializing arrays using a random num-
ber generator, and carefully controlling the memory hierarchy state to match
those used in the whole applications. For data sensitive routines (e.g., a pointer-
chasing algorithm), we use a checkpointing approach, discussed in Section 3.2.
Note that the default timing approach may still allow reasonable tuning of some
data-sensitive routines, as illustrated by our experimental results in Section 5.

3.1 The Default Timing approach

1: n← number of routines
2: r ← list of routines to instrument
3: p← maximum number of parameters × sizeof(largest parameter type)
4: i← estimated calls to routine + sizeof(double precision floating point)
5: on application start, Setup instrumentation data buffer D[n× p× i]
6: for each routine i in r do

7: v ← parameter values of ri

8: time ri

9: t← wall clock time of ri

10: D ← key-value pair ri(v) : t, avoid polluting cache
11: end for

12: on application termination, Write contents of D to stdout or file

Fig. 2: Instrumentation Algorithm.

For data insensitive routines, we instrument their invocations within whole
applications to record the integer parameter values and the wall clock times
spent in evaluating each invocation. The collected information is then used to
determine what values to supply when independently tuning these routines. The
performance of routines collected within the applications is also used as reference
in section 5 to determine the accuracy of the performance reported by our auto-
generated timers.

Figure 2 presents the default approach to instrumenting the applications,
where a data buffer D is created at the start of the application. The data buffer
is of a configurable size, which is based upon the number of routines profiled,



the maximum number of sampled parameters, and the estimated number of calls
to each routine. Note that the maximum number of parameters include only
parameters that are of interest (in most cases integer type parameters). Once
setup is complete, every time a routine in r (the list of routines to instrument) is
invoked, the routine parameter values (v) and execution time of the routine (t)
are recorded. These values are written as a key-value pair to the data buffer (D)
using instructions that avoid cache pollution. Upon application termination, the
contents of data buffer D are written to a file or stdout.

3.2 The Checkpointing Approach

When invoked within whole applications, a data-sensitive routine sometimes has
complex data structures (e.g., linked lists, trees and graphs) which are almost
impossible to replicate without the original application. For these routines, we
have adopted the checkpointing approach, a technique most commonly associ-
ated with providing fault tolerance in systems, to precisely capture the memory
snapshot before the application invokes the routine. A similar checkpointing ap-
proach was first successfully employed in an end-to-end empirical optimization
system built using the ROSE compiler [12].

Checkpointing works by saving a “snapshot” image of a running application.
This image can be used to restart the application from a saved context. Our
framework utilizes the Berkeley Lab Checkpoint/Restart (BLCR) library [5]. It
facilitates checkpointing by providing a tiny library that can be used to generate
a context image of an application.

enter_checkpoint(CHECKPOINTING_IMAGE_NAME);
.....

starttime=GetWallTime();
retval = mainGtU(i1, i2, block, quadrant, nblock, budget);

endtime=GetWallTime();
.....
stop_checkpoint();

Fig. 3: Creating a contextualized snapshot of a routine.

Figure 3 demonstrates how a context image for a call to the routine mainGtU()
can be created using two calls: enter checkpoint and stop checkpoint. Specifically,
the created image includes all the data in memory before calling enter checkpoint
and all the instructions between enter checkpoint and stop checkpoint. The im-
age can be used in a specification file to our POET timer generator, discussed in
Section 4, to automatically generate a checkpoint driver. The driver then con-
tains code that loads and restarts the checkpoint image and reports the time
spent in evaluating the routine of interest. Note that while the intended usage
involves checkpointing a call to a routine, this approach can be used to measure
the performance of any critical region of code.

It is possible to call enter checkpoint immediately prior to the region of in-
terest. However, this is not the case in Figure 3. Since restoring a checkpoint
memory image does not restore any of the data into cache (and indeed may force
normally-cached data onto disk), it essentially destroys the cache state of the
original program. To restore the cache state before calling the routine of interest,



it is better to call enter checkpoint several loop iterations or instructions ahead
of the region of interest, so that execution of these instructions can help restore
the original cache state before the timed region is reached. How far in advance
to place the enter checkpoint call is a trade-off between reproduction accuracy
and sample time.

To calculate the amount of “delay” between the enter checkpoint call and
the region of interest, the distance between the checkpoint and the region is
incrementally increased until there is no noticeable variance in performance. In
detail, the enter checkpoint call is placed immediately prior to the region of in-
terest and a timing is obtained. Next the enter checkpoint call is placed in the
previous iteration (when the region is in a loop) or the previous function invo-
cation (when the region is not in a loop) and a new timing is obtained. The
process is applied iteratively until the variation between timings falls below a
chosen threshold. This process is semi-automated: once the boilerplate calls (en-
ter checkpoint and stop checkpoint) are in place the best “delay” can be selected.
We refer to placing the checkpoint immediately prior to the region of interest
as “immediate checkpointing” and to placing the checkpoint several instructions
prior to the region as “delayed checkpointing.”

4 Automatically Generating Timers

After profiling an application to collect information on the execution environ-
ment of individual routines, we express such information in the format of a
routine specification, which is then used by our POET timer generator (see Fig-
ure 1) to automatically produce a reconfigurable implementation (currently in
the C language) of the timing driver, so that performance of varying routine
implementations can be tuned independently of their original applications.

r ou t i n e=void ATL USERMM( const int M, const int N, const int K,
const double alpha , const double∗ A, const int lda ,
const double∗ B, const int ldb , const double beta ,
double∗ C, const int l d c ) ;

i n i t={
M=Macro (MS, 7 2 ) ; N=Macro (NS , 7 2 ) ; K=Macro(KS, 7 2 ) ;
lda=MS; ldb=KS; l d c=MS; alpha=1; beta=1;
A=Matrix (double , M, K, RANDOM, f l u sh | a l i gn ( 1 6 ) ) ;
B=Matrix (double , K, N, RANDOM, f l u sh | a l i gn ( 1 6 ) ) ;
C=Matrix (double , M, N, RANDOM, f l u sh | a l i gn ( 1 6 ) ) ;

} ;
f l o p=" 2* M*N*K+M*N" ;

Fig. 4: gemm.spec: Sample specification for the GEMM driver.

An example routine specification for a matrix multiplication kernel is shown
in Figure 4, which includes a routine declaration, a section to allocate, initialize,
and control the cache states of routine parameters, and a formula for comput-
ing the MFLOPS (millions of floating point operations per second). In particu-
lar, three integer parameters, M , N , and K, are initialized with environmental
macros whose values can be dynamically adapted by simply re-compiling the
timing driver; three matrices A, B, and C are allocated with appropriate sizes,
initialized with pseudo-randomly generated data, aligned to a 16 byte boundary,
and are flushed between timings.



Our timer generator in Figure 1 is essentially a translator written in POET [20],
an interpreted transformation language designed for building ad-hoc translators
between arbitrary languages (e.g. C/C++, Java) as well as applying sophisti-
cated transformations to programs in these languages. The POET translator
is extensively parametrized with variables whose values can be redefined via
command-line options. Therefore, a wide variety of timing driver implementa-
tions can be manufactured from a single routine specification by redefining values
of the command-line parameters, including the input/output file names, the out-
put language, cache size, Instruction Set Architecture, processor clock rate, and
timing methods (e.g., whether to use wall or CPU time).

A template of the auto-generated timing driver is shown in Figure 5 , which
can be instantiated with the concrete syntax of different programming languages
(our current work uses the C language) as well as different implementations (e.g.,
elapsed wall time, cycle-accurate wall time, or CPU cycles) to measure the per-
formance of the invoked routine. Note that some of the control-flow statements
(e.g., for-endfor and if-endif) in Figure 5 are not part of the generated code.
They are used by the POET timer generator to selectively (in the case of if-
endif) or repetitively (in the case of for-endfor) produce necessary statements
in the resulting driver.

Require: Routine definition R

for each routine parameter s in R do

ifs is a pointer or array variable then allocate memory ms for s endif

ifs needs to be initialized then initialize ms endif

end for

for each repetition of timing do

if Cache flushing = true then Flush Cache endif

times ← current time

call R

timee ← current time
timesr ← timee − times

end for

Calculate min, max, and average times from timesr

if flops is defined then

Calculate Max MFLOPS as flops × 1,000,000

min

Calculate Average MFLOPS as flops × 1,000,000

average

end if

Print All timings

Fig. 5: Template of auto-generated timing Driver.

The generated driver repetitively invokes the routine, optionally flushes the
cache for each invocation, and measures the elapsed time spent while invoking
the routine. Once all timing measurements are collected, the minimum, average,
and maximum timings are calculated and reported. If a formula to calculate the
number of floating point operations is included in the routine specification, the
maximum and average MFLOPS are also computed and reported. Further, if the
execution time of a single routine invocation is under clock resolution, multiple
invocations can be collectively measured to increase timing accuracy.

We adopt sophisticated cache flushing mechanisms as discussed in [17] in
our timing drivers. Specifically, the cache flushing strategy is re-configurable by
command-line and every strategy makes sure that the flushing does not stand
in the way of accurately measuring the performance of the routine being timed.



5 Experimental Evaluation

The goal of our evaluation is to validate that our POET-generated timers can
not only significantly reduce the tuning time for large applications, they can
accurately reproduce the performance of the timed routine when invoked within
whole applications. To achieve this goal, Section 5.2 shows the reduction in tun-
ing time achieved using our framework. Section 5.3 compares the timing results
using our auto-generated timer for a matrix multiplication kernel with those
obtained using the ATLAS timer, which is known to accurately reflect the com-
mon usage patterns of the kernel. Sections 5.4, 5.5, and 5.6 present performance
results for three routines selected from different SPEC2006 benchmarks.

Our results show that our timers can perform similarly to the ATLAS timer
in accurately reporting performance of data-insensitive routines in scientific com-
puting, and that the performance results reported by our timers closely repro-
duce those collected directly from within the SPEC2006 benchmarks.

5.1 Methodology

We performed our evaluation on two multicore platforms: a 3.0Ghz Dual-Core
AMD Opteron 2222 and a 3.0Ghz Quad-Core Intel Xeon Mac Pro. The timings
are obtained in serial mode using a single core of each machine.

To compare our auto-generated default timer (see Section 3.1) with the AT-
LAS timer, we selected five different implementations of the ATLAS Matrix
Multiply (referred to as MMK ) kernel automatically generated using techniques
presented in [21], where each implementation differs only in the cache blocking
factor. The routine specification of this kernel is shown in Figure 4. The imple-
mentation of the kernel has been heavily optimized using techniques described
by Yi and Whaley in [21], and achieves roughly 80% of theoretical peak perfor-
mance when timed in cache (therefore, while this is not the fastest known kernel,
it is quite good).

Each timer is tested for the totally cold-cache state (all operands cache
flushed, labeled as Flush in figures) and with operands that have been allowed to
preload the levels of cache by an unguarded operand initialization immediately
prior to the timing call (labeled as No Flush in figures).

On the AMD platform, each MMK implementation is compiled using gcc

4.2.4 with optimization flags -fomit-frame-pointer -mfpmath=387 -O2

-falign-loops=4 -m64 (note we use the x87 rather than the vector unit be-
cause on 2nd generation Opterons, both units have the same double precision
theoretical peak, but the x87 unit has markedly decreased code size and increased
precision). On the Intel platform, each MMK implementations is compiled us-
ing gcc 4.0.1 with optimization flags -fomit-frame-pointer -mfpmath=sse

-msse3 -O2 -m64.
We selected the following routines from the SPEC2006 benchmark suite.

– Routine mult su3 mat vec, from 433.milc, performs an array-based matrix-
vector multiplication and is data-insensitive (i.e., the performance does not



depend on the content of the input arrays). We compare the performance
of the POET-generated default timer using randomly generated arrays with
timings obtained by profiling the whole application.

– Routine mainGtU, from 401.bzip2, is a variant of the quicksort algorithm us-
ing arrays. The computation depends on the content of the array being sorted
and thus is data-sensitive. We compare the performance results obtained by
the POET-generated default timer using randomly generated arrays, by the
POET-generated checkpoint timer, and by profiling the application.

– scan for patterns, from 445.gobmk, is an extremely data-sensitive routine
that operates on pointer-based linked-list data structures. We compare our
POET-generated checkpoint timer with timings obtained by profiling the
application.

Each SPEC2006 benchmark is compiled on both the AMD and the Intel
platforms using a variety of optimization flags, including -O0, -O1, -O2, -O3,

and -Os. All POET-generated timers themselves are compiled with the flag -O2.
When using POET-generated checkpoint timers, we present results using both
the immediate checkpointing and delayed checkpointing approaches (for details
of these approaches, see Section 3.2).

5.2 Cost comparison of timing mechanisms

Benchmark Delayed Checkpoint Immediate Checkpoint Default Timer

mult su3 mat vec 877,430ms 3,502ms 3,510ms 5ms
mainGtU 45,765ms 2,019ms 1,975ms 4ms
scan for patterns 90,460ms 6,218ms 5,930ms n/a

Table 1: Average runtimes for each SPEC2006 routine on AMD.

As shown in Table 1, the time required to collect performance feedback of a
routine can be drastically reduced by using an independent timing driver instead
of instrumenting the whole application. We see that our default timer is as
much as 175,486 times faster than running the full benchmark, while even our
delayed checkpoint timer is over 250 times faster. The timing results on the Intel
machine are similar. These reductions in execution time are critically important
for empirical tuning systems which may evaluate a routine hundreds or thousands
of times.

For data-sensitive routines such as mainGtU and scan for patterns, check-
pointing or running the full benchmark yields the most accurate results. How-
ever, these methods are also more expensive than the default timer approach.
The default timer takes significantly less time to run than the other approaches
and therefore should be used where possible. The checkpoint timers take signif-
icantly less time than running the entire benchmark and should be used when
the values of the input arrays are critical or when pointer-chasing routines are
involved.

5.3 Comparing with The ATLAS Timer

Figure 6 compares the timings reported by the ATLAS timer and POET default
timer with and without cache flushing for a MMK kernel using five different
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Fig. 6: ATLAS vs. POET timers with identical GEMM kernels on AMD.

cache blocking factors, where nb62 denotes a blocking factor of 62*62 for the
matrices. Figure 6(a) provides an overview of the timing results by comparing
the MFLOPS measured by the ATLAS and the POET timers respectively. For
each kernel implementation, the performance with cache flushing is slower than
without flushing and the performance reported by ATLAS and POET are ex-
tremely close. This is easier to see in Figure 6(b), which reports the POET timer
results as a percentage of the ATLAS timer results. For these kernel implemen-
tations, we see that the variation between the timers is less than 3%.

Timings taken on actual hardware running commodity OS are never precisely
repeatable in detail. Since our POET timer is implemented independently of
ATLAS, we expect some minor variance due to implementation details. The
question is whether these relatively minor variances in timing represent errors,
or if they are instead caused by the nature of empirical timings in the real world.
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Fig. 7: Variance on a given kernel implementation between an initial ATLAS timing
step with 200 subsequent results reported by POET or ATLAS timers on AMD.

Figure 7 sheds some light on this question: this figure shows the variation
between timing runs for a single kernel implementation (with a predetermined
blocking factor of 62), which we have timed 200 times. In Figure 7(a), we first
run the ATLAS timer once for each cache state (+: no cache flushed, x: with
cache flushing). We then time the same kernel 200 times using the POET default
timer. For each cache state, we plot the POET timer’s reported performance as
a percentage of the original ATLAS measurement. We see some obvious jitter in



the results, with variances that are mostly contained within a similar 3% range
as we saw in Figure 6.

Figure 7(b) provides a strong indication that most of the observed variance
is indeed due to the nature of empirical timings on actual machines. Here (using
the same initial ATLAS timing as we compared against in Figure 7(a)), we do
200 more timings using the ATLAS timer itself. When we compare Figures 7 (a)
and (b), we see that the variance between POET and ATLAS is only slightly
greater than the variance between ATLAS and itself. Therefore, we conclude that
our generated timer is able to adequately reproduce the behavior of ATLAS’s
hand-crafted timer for these hot and cold cache states.

5.4 Timing Results For SPEC2006 Routine mult su3 mat vec

This is a matrix-vector multiplication routine and is timed 1000 times using the
POET-generated default timer (with arrays initialized with random values) both
with and without cache flushing. The goal of this experiment is to verify that the
default timers accurately replicates the measured performance from within the
benchmark. Specifically, we expect that the default timer without cache flushing
will accurately reproduce the benchmark’s performance, since this routine is
called with its operands in cache for all invocations except the initial call.
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Fig. 8: Timings of 500 consecutive calls to mult su3 mat vec.

Figure 8 confirms our expectation by showing performance results of the
routine when measured using the POET default timers (with and without cache
flushing) and when measured from within the benchmark. As shown in Fig-
ure 8(a) and Figure 8(b), the default timings without flushing match extremely
closely to the calls timed from within the benchmark, except when the routine
is called the first couple of times (demonstrated by a lone aberrant ∗ along the
0th call), and a spike just past the 200th call of routine from within the applica-
tion in (a). The spike is apparently due to unrelated activity affecting our wall
times (this spike either disappears or shows up in other places if the timing is
repeated). Therefore, we can classify this benchmark as using the kernel with
warm caches (except the first few calls).

Since the routine uses statically initialized arrays, the input data are not in
the cache on the first call, whose performance matches our flush timing results.
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Fig. 9: Minimum and Average timings of mult su3 vec on AMD.

However, after calling the routine several times with the same workspace, the
operands become cache contained, and so the overwhelming majority of calls
closely match our no flush timings. On a cache with LRU cache line replacement,
the second call would already have brought the data into any cache large enough
to contain it. The machines we are using, however, have non-LRU replacement
L2 caches, and this means that several passes over a piece of data are required
before it is almost completely retained in the cache. Therefore, what we see is
that the first call essentially runs at flush speed, and then the time for the next
few calls decreases monotonically until the no flush time is reached. In such
cases, it can be helpful to sort the usage contexts into several important groups,
and tune them separately.

In Figure 9 we have sorted the first four routine calls into the early group,
and all remaining calls into the late group. We see in Figure 9(a) that for
both minimum and average times1 that the no flush times are an extremely
close match for the late group (verifying the general trend of Figure 8(a)). In
Figure 9(b), we see that the flush group is not an exact match for our early

group, which averages the first 4 calls, where only the first is fully out-of-cache.
However, even this rough grouping would be adequate to tune this kernel for
both contexts, assuming they were both important enough.

Our POET-generated timers can obviously capture the performance of rou-
tines when invoked either in-cache or fully out-of-cache, but for some applications
the data may be only partially cache-contained. We can simulate these cases by
partially flushing the cache in the default timer. Figure 10 demonstrates the
ability of the default timers to capture the variation that arises as a result of
the cache state. The default timers can reproduce a range of timings between
the non-flushed and completely flushed state by using different flush sizes. This
figure shows a progression of flushing sizes (from 512K to 2048K) in addition
to no-flushing and complete flushing. Tracing through each flushing size (from
none to full), a monotonic increase in the wall clock time can be observed such
that an increase in the size of the flush results in an increase of time.

1 maximum wall clock time can be extremely unstable and is therefore not used.
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Fig. 10: POET Timers w/ increasing flush.

We can use the POET-generated
default timers to reproduce timings
that lie anywhere in between the flush

and no flush lines. If the cache state
of the application during a typical rou-
tine call is unknown (the usual case),
profiling can be used to capture where
the results lie, and the flush size can
be adjusted so that the timer roughly
reproduces the required cache state.

5.5 Timing Results For

SPEC2006 Routine mainGtU

The routine mainGtU is a sorting algorithm whose performance is sensitive to
the content of the input array. We have used both the POET-generated default
timer and the POET-generated checkpoint timer to independently measure per-
formance of this routine. The goal of this experiment is to determine how closely
both the default timer and the checkpoint timer can reproduce the timings ob-
tained from instrumenting the benchmark.
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Fig. 11: 1000 consecutive calls to mainGtU on AMD.

Figure 11(a) compares timings generated using the default timer with those
taken from profiling the entire benchmark. Since the default timer uses ran-
domly generated data, it will not capture cases where the data is in a particular
order (eg., near sorted). Given these factors it is not expected that the POET-
generated default timer should identically replicate each individual call; indeed
unless the data distribution and order can be characterized, random data is
probably as accurate as anything short of using the application’s actual input.

If the precise behaviour of individual calls needs to be replicated, then check-
pointing can yield accurate timings by exactly duplicating the input data. Fig-
ure 11(b)compares the results for both immediate (denoted by *) and delayed (x)
checkpointing to those obtained from profiling the benchmark (+). Immediate
checkpointing creates a checkpoint image of exactly one routine call. Delayed
checkpointing creates a checkpoint image of several calls (three calls for this
timing) to the routine, of which only the last call is timed. The methodology



to determine how much to “delay” is discussed in section 3.2. Immediate check-
pointing results in a cold memory hierarchy, and we see that these numbers are
therefore even slower than our flush results from Figure 11(a). Delayed check-
pointing allows for bringing the working set into the cache, thereby allowing
for an extremely accurate reproduction of the timings taken from within the
benchmark.

5.6 Timing Results For SPEC2006 Routine scan for patterns
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Fig. 12: scan for patterns on AMD.

The routine scan for patterns is a
data-sensitive pattern matching al-
gorithm that processes pointer-based
linked-lists. Faithfully reproducing the
necessary contexts for such a pointer-
chasing algorithm is extremely diffi-
cult and often not feasible. To sup-
port the tuning of routines such as
scan for patterns we use the POET-
generated checkpoint timer. Here, the
goal of our experiment is to demon-
strate that the performance of complex pointer-chasing routines can be accu-
rately replicated using the checkpoint timer.

Figure 12 compares the result of delayed and immediate checkpointing with
timings obtained by profiling the benchmark. We can see that delayed check-
pointing (designated by x) closely replicates the benchmark profiled timings (+)
while immediate checkpointing follows the general trend of the benchmark (i.e.,
calls 200-300 are faster than 400-500) but with increased times due to the cold-
cache state as discussed in Section 3.2.

6 Conclusion

This paper presented a general-purpose framework for automatically generat-
ing timing drivers that can accurately report the performance of computational
routines in the context of automatic performance tuning. We have explored a
variety of ways to accurately reproduce the common usage patterns of a rou-
tine so that when independently timing the routine, the reported performance
results accurately reflect the expected performance of the routine when invoked
directly within applications. We have demonstrated the importance of check-
pointing several instructions or iterations before the routine being measured
(delayed checkpointing) in obtaining accurate timings. Finally, we have shown
that using the auto-generated timers can significantly reduce tuning time with-
out compromising tuning accuracy.
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