
SMART'10 1

 Automated Timer
Generation for Empirical

Tuning
Josh Magee

Qing Yi
R. Clint Whaley

University of Texas at San Antonio

SMART'10 2

Propositions
 How do we measure success for tuning?

 The performance of the tuned code --- of course
 But what about tuning time?

 How long are the users willing to wait? Given 3 more hours,
how much can we improve program efficiency?

 Auto-tuning libraries have been successful and widely used
 ATLAS, PHiPAC, FFTW, SPIRAL...
 Critical routines are tuned because they are invoked many

many times
 What happens when tuning whole applications?

 What the end users need and what compilers expect to see
 But applications are often extremely large and time consuming

to run
 Do not want to rerun entire applications to try out

different optimization configurations

SMART'10 3

Observations
 Performance of full applications critically depend on a few

computation/data intensive routines
 These routines are often small but invoked a large number of times
 Performance analysis tools (e.g., HPC toolkit) can be used to identify

these routines
 Tuning these routines can significantly improve overall

performance of whole applications while reducing tuning time
 In some SPEC benchmarks, running the whole application is about

175K times longer than running a single critical routine
 The problem: setting up execution environment of the routines

 A driver is required to set up parameters and global variables properly
and accurately measure the runtime of each routine invocation

 The cache and memory states of the machine is very important
(Whaley and Castaldo, SPE’08)

 NOT a trivial problem as one may think
Overall goal: reduce tuning time without sacrificing

tuning accuracy

SMART'10 4

Empirical tuning approach

 Instrumentation library
 Collect details of routine execution within whole applications
 Invoked after HPC toolkit is used to identify critical routines

 POET timer generator
 Input: routine specification + cache config + output config
 Output: timing driver with accurately replicated execution environment

 Support a checkpointing approach for routines operating on irregular data

 Empirical tuning system
 Apply optimizations to produce different routine implementations
 Link routine implementation with the timing driver and collect performance

feedback

SMART'10 5

Replicating Environment of Routine
Invocations
 Goal: ensure proper input values and operand workspaces

 Reflect common usage patterns of routine
 Should not result in abnormal evaluation

 Data insensitive routines
 Amount of computation determined by integer parameters controlling

problem size
 Performance not noticeably affected by values stored in input
 Example: dense matrix multiplication

 Data sensitive routines
 Amount of computation depends on values and positioning of data
 Examples: sorting algorithms, complex pointer-chasing algorithms

 Replicating routine invocation environment
 For data insensitive routines: replicate problem size and use randomly

generated values
 For data sensitive routines: use the check-pointing approach

SMART'10 6

The Default Timing Approach
(for data-insensitive routines)

routine=void ATL_USERMM(const int M,
 const int N, const int K,
 const double alpha,
 const double* A, const int lda,
 const double* B,const int ldb,
 const double beta,
 double* C, const int ldc);
init={
 M=Macro(MS,72);
 N=Macro(NS,72);
 K=Macro(KS,72);
 lda=MS; ldb=KS; ldc=MS; alpha=1; beta=1;
 A=Matrix(double,M,K,RANDOM,flush|align(16));
 B=Matrix(double,K,N,RANDOM,flush|align(16));
 C=Matrix(double,M,N,RANDOM,flush|align(16));
 } ;
flop="2*M*N*K+M*N";

Routine specification for a
Matrix Multiplication kernel for each routine parameter s in R do

 if s is a pointer or array variable then
 allocate memory for s
 end for
 for each repetition of timing do
 for each routine parameter s in R do
 if s needs to be initialized then
 initialize memory_s
 end for
 if Cache flshing = true then Flush Cache
 time_start <- current time
 call R
 time_end <- current time
 time_spent <- time_end - time_start
 end for
 Calculate min, max, and average of
time_spent
 if flps is defied then
 Calculate Max and average MFLOPS
 end if
 Print All timings

Template of auto-generated timing driver

SMART'10 7

The Checkpointing Approach
(for data-sensitive routines)

 Checkpoint image includes
 All the data in memory before calling enter_checkpoint
 All the instructions between enter_checkpoint and stop_checkpoint

 Checkpoint image is saved to a file
 Auto-generated timers can invoke the checkpoint image via a call to

restart_checkpoint
 Utilize the Berkeley Lab Checkpoint/Restart (BLCR) library
 Delayed checkpointing

 Call enter_checkpoint several instructions/loop iterations ahead of
time to restore the cache state

enter_checkpoint(CHECKPOINTING_IMAGE_NAME);
.....
starttime=GetWallTime();
retval = mainGtU(i1, i2, block, quadrant, nblock, budget);
endtime=GetWallTime();
.....
stop_checkpoint();

SMART'10 8

The POET Language
 Language for expressing parameterized program

transformations
 Parameterized code transformations and configuration space

 Transformations controlled by tuning parameters
 Configuration space: parameters and constraints on their values

 Interpreted by search engine and transformation engine
 Language capabilities:

 Able to parse/transform/output arbitrary languages
 Have tried subsets of C/C++, Cobol, Java; going to add Fortran

 Able to express arbitrary program transformations
 Support optimizations by compilers or developers
 Have implemented a large collection of compiler optimizations
 Have achieved comparable performance to ATLAS(LCSD07)

 Able to easily compose different transformations
 Allow transformations to be defined easily reordered
 Empirical tuning of transformation ordering (LCPC08)

 Parameterization is built-in and well supported

SMART'10 9

Experimental Evaluation
 Goal: verify that POET-generated timers can

 Significantly reduce tuning time for large applications
 Accurately reproduce performance of the tuned routines

 Methodology
 Compare POET-generated timers with the ATLAS timers

 Using differently optimized gemm kernels by POET
 Compare POET-generated timers with profiling results from

running whole applications
 For both data-insensitive and data-sensitive routines
 Verify both the default timing approach and the checkpointing

approach

 Evaluation platforms
 Two multicore platforms: a 3.0Ghz Dual-Core AMD Opteron 2222 and a

3.0Ghz Quad-Core Intel Xeon Mac Pro.
 Timings obtained in serial mode using a single core of each machine.

SMART'10 10

Reduction in tuning time

n/a5,930ms6,218ms90,460msscan_for
_patterns

4ms1,975ms2,019ms45,765msmainGtU

5ms3,510ms3,502ms877,430msmult_su3_
mat_vec

Default
timing via
POET

Immediate
checkpoint

Delayed
checkpoint

Full
application

SMART'10 11

Comparing to ATLAS

SMART'10 12

Tuning Data-Insensitive Routine

SMART'10 13

Tuning Data-Sensitive Routine

SMART'10 14

Summary and Ongoing work
 Goal: reduce the tuning time of large scientific applications

 Independently measure and tune the performance of critical
routines

 Accurately replicate the execution environment of routines

 Solutions
 Libraries to profile and collect execution environment of

critical routines
 Use POET to automatically generate timing drivers
 Immediate and delayed checkpointing approach

 Ongoing work
 Reduce tuning time through the right search strategies
 Automate the tuning process by integrating POET with

advanced compiler technologies

