Application Heartbeats
CSAIL

Henry Hoffmann, Jonathan Eastep, Marco Santambrogio,
Jason Miller, Anant Agarwal

CSAIL
Massachusetts Institute of Technology
Cambridge, MA 02139

http://groups.csail._mit.edu/carbon/heartbeats

Outline

CSAIL

 Introduction/Motivation
— Problem: Monitoring applications in self-tuning systems
— Solution: Standard interface expresses performance/goals

« Application Heartbeats

* EXxperiments

 Conclusion

As System Complexity Increases,
CSAIL Self-Tuning Systems Emerge

Heaﬁheats j

« System Complexity is Skyrocketing
— Multicore processors ‘“‘*
— Parallel communication libraries o2
— Heterogeneous architectures
— Distributed, deep memory hierarchies
— Special-purpose functional units
— Unreliable components
— New constraints: power, energy, wire delay

« Application programmers must be T
experts in systems and apps

Possible Solution: Self-Tuning Systems

Systems observe their runtime behavior, learn, and
take actions to meet desired goals

Self-tuning Systems Must Monitor
CSAIL the Applications They Support

Currently, applications run as performance black-boxes:

Application @ ®
Layer

o

|

IPC, power, voltage, freq, feq cache size, 2!
precision associativit
temp rate y App 2

o
2
g
Self-Tunin Scheduler,
. g Memory @ Cache @ p—
Services manager, file oo e App 1
system
Layer . § 7 | ~7 s
Operating Core Core AN Devices
System

We propose Application Heartbeats as a standard API for applications to
specify their goals and performance to self-tuning system services

Outline

CSAIL

* Introduction/Motivation

« Application Heartbeats
— ldea
— Interface

* EXxperiments

 Conclusion

CSAIL

Machine

0S

/

App Parameters e
App J L System Parameters

(@) (b)

At key intervals, apps issue a heartbeat using a simple function call

Apps also register desired performance with other function calls

The performance (heart rate) can be read within the application (a) or by
another process (b)

If performance is low the system adapts to increase performance

Application Heartbeats Provide Standard e =
API for Expressing Performance & Goals 5

Heartbeat @

CSAIL

heartbeat,

goals

D

Apps no
longer
performance
black-boxes

App 1
Min heart rate = 10
Max heart rate = 100

Current heart rate = 75

App 2
Min heart rate = 29.5

Max heart rate = 30

Current heart rate = 29.8

App 3
Min heart rate = 0.5
Max heart rate = 1.5

Current heart rate = .2

Heartbeats

/Application\

/

Scheduler,
Memory

manager, file
system

Operating
System

activity, voltage, freq,
power, temp precision

@ Cache
o0

miss cache_sgg

v

@AppZ

@ Cache

App 1l

App 3

3\

Core

DRAM

|

Devices

» Application Heartbeats express goals and current performance
» System software can use Heartbeats to directly measure performance

CSAIL

Heartbeat APl Functions

Function

Parameters

Description

heartbeat_initialize

[int] window_size

Initialize the heartbeat object to collect heartbeats. Uses
a sliding window of window_size to calculate current
hear trate

heartbeat

[int] tag

Records a heartbeat with a given tag

hb_get_current_rate

Returns the current heart rate averaged over the last
window_size heartbeats

hb_set_target_rate

[float] min, [float] max

Sets the desired min and max heart rates for this app

hb_get _target_min_rate

Returns the minimum desired heart rate

hb_get _target_max_rate

Returns the maximum desired heart rate

hb_set target_latency

[float] min, [float] max, [int]
tagl, [int] tag2

Sets the desired latency between heartbeats with tags
tagl and tag2

hb_get_min_latency

[int] tagl, [int] tag2

Returns the minimum desired latency between two tags

hb_get _max_latency

[int] tagl, [int] tag2

Returns the maximum desired latency between two tags

hb_get_history

[int] n

Returns all heartbeat information for the last n
heartbeats

Heartbeat API allows direct communication of performance and goals

Heartbeats Reference Implementations

CSAIL http://groups.csail_mit.edu/carbon/heartbeats

Callable from C/C++

Application
Heartbeats

-
&
I
m

—
=
=l
=

i
Hn

=

5
= I "?ﬂi IJ_.III
fi

o
H B

 Files for distributed computing « Shared Memory for multicore
« Performancel » Performance?
— Throughput: ~0.900 Kbeat/s — Throughput: ~1500 Kbeat/s
— Latency: ~1000 us — Latency: ~1.5 us

1. Intel Xeon servers @3.16 GHz with :Linux NFS
2. Intel Xeon servers @ 3.16 GHz with Linux and POSIX shared memory

Outline

CSAIL

Introduction/Motivation
Application Heartbeats

Experiments

— Heartbeat use within an application
— Heartbeat use by an external system
— Other systems using Heartbeats

Conclusion

10

[E@% Experiment 1: Internal Heartbeat Usage

CSAIL

« Experiment 1. Adaptive H.264 Encoder
« Goal: produce the highest quality video in real-time

 Method:

— A heartbeat is registered for each frame (frame rate = heart rate)
— Encoder reads heartbeat and changes algorithm to reach target

* Results:
— Now the encoder is fast and still high quality
— Achieve target performance with barely visible quality loss

11

CSAIL
35
30

—~ 25

v

7p]

()]

=

g 20

L

ot

g 15

<

()

T 10
5
0

Example 1: Performance

reduced sub-pixel search

[~

v

—e— Adaptive Encoder
=== Target Heart Rate

reduced sub-pixel search

eliminated rate-distortion optimizations
eliminated sub-16x16 modes in P-frames
eliminated P8x8 mode in P-frames

eliminated 14x4 mode in I-frame

eliminated 14x4 mode in P-frames

esa search
b e dia search
umh search
0 100 200 300 400 500 600

Time (Frame Number)

12

PSNR Difference (dB)

CSAIL

0.8

Example 1: Image Quality

0.6

0.4

0.2

100

200 300 400
Frame number

13

[E@% Example 2: External Heartbeat Usage

CSAIL

« Experiment 2: External System Reads Heart Rate and Assigns
Cores

« Goal: Assign cores to keep performance within target range

« Method: Use PARSEC benchmarks

— Target heart rates set to be achievable using less than full number of
cores

* Results:
— The scheduler keeps the applications running at the target speed
— Scheduler can adapt to changes in the difficulty of the inputs

14

CSAIL

B
&

N
o1

Heart Rate (beat/s)

©
o ul

Example 2: bodytrack

0
w o1
ﬁ

=
R O N
ﬁ ﬁ

Time (Heartbeat)

I #W\mm/\# AV
‘ //J e ™ Ju|
/ —+— Heartrate
Target Min -\
o
0 5'0 100 1é0 200 250

OI—‘I\JOO-bU'IO\IOOG)

N
@
LS
o
O

15

Example 2: streammcluster

CSAIL
0.8 8
7
’\UT 0.6]\/’\
o A
2 v
Q
Is
e
< 0.3 |
2 —— Heartrate
Target Min 2
— Target Max
0.1 —— Cores 1
0) \ | | | 0
0 20 40 60 80

Time (Heartbeat) 16

Example 2: x264

CSAIL

. \ \
Y RYA AV R

9
8
4
Q] K2
;—: 30 &\l ¥ \/ L I \/ P S 6 8
© 25 -5 o
nd @)
£ 20 ! . 4
8 15 ﬁ// — Heart Rate 3
I)
Target Min
10 = Target Max 2
5 —— Cores 1
O * T T ' O
0 200 400 600

Time (Heartbeat) 17

Other Heartbeat Uses

CSAIL

* SpeedPress compiler and SpeedGuard runtime system
— The SpeedPress compiler discovers possible quality-of-service/
performance tradeoffs
* Achieve up to 2x speedup for 5% QoS loss
— The SpeedGuard runtime makes these tradeoffs dynamically in

response to maintain a given heart rate in the face of
environmental changes

More detail available in:

Hoffmann, Misailovic, Sidiroglou, Agarwal, Rinard. Using Code Perforation to Improve Performance,
Reduce Energy Consumption, and Respond to Failures. MIT-CSAIL-TR-2209-042. August, 2009.

SmartLocks
— Subject of an upcoming SMART talk

18

Outline

CSAIL

 Introduction/Motivation
« Application Heartbeats
* EXxperiments

« Conclusion
— Request for feedback/usage
— Summary

19

Request for Feedback

CSAIL

Thanks to the reviewers for their feedback, but we need more...

Heartbeat code is available online
http://groups.csail _.mit.edu/carbon/heartbeats

We need your feedback!

— If you have an self-tuning system service that could benefit from being
able to directly measure an application’s performance try the interface

— Let us know what you think

20

Summary

CSAIL

» Presented the Application Heartbeat interface

— API provides a standard means for an application to make its
performance and goals known

* Presented several experiments showing basic usage

— Several other systems at MIT are using Heartbeats in more
advanced applications

* Requested feedback from the community

21

Adaptive Scheduling Algorithm

CSAIL

» Take average heart rate over last 20 beats

* If heartbeat < target min
— Add a core
— Wait for 20 beats and reapeat

* Else If heartbeat > target max
— Remove a core
— Wait for 20 beats and repeat

 Else
— Repeat

22

	Application Heartbeats
	Outline
	As System Complexity Increases, �Self-Tuning Systems Emerge
	Self-tuning Systems Must Monitor �the Applications They Support
	Outline
	The Application Heartbeats Idea
	Application Heartbeats Provide Standard API for Expressing Performance & Goals
	Heartbeat API Functions
	Heartbeats Reference Implementations�http://groups.csail.mit.edu/carbon/heartbeats
	Outline
	Experiment 1: Internal Heartbeat Usage
	Example 1: Performance
	Example 1: Image Quality
	Example 2: External Heartbeat Usage
	Example 2: bodytrack
	Example 2: streammcluster
	Example 2: x264
	Other Heartbeat Uses
	Outline
	Request for Feedback
	Summary
	Adaptive Scheduling Algorithm

