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Outline

• Introduction/Motivation
– Problem: Monitoring applications in self-tuning systems
– Solution: Standard interface expresses performance/goals

• Application Heartbeats

• Experiments

• Conclusion
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As System Complexity Increases, 
Self-Tuning Systems Emerge

• System Complexity is Skyrocketing
– Multicore processors 
– Parallel communication libraries
– Heterogeneous architectures
– Distributed, deep memory hierarchies
– Special-purpose functional units 
– Unreliable components 
– New constraints: power, energy, wire delay

• Application programmers must be 
experts in systems and apps

Possible Solution: Self-Tuning Systems 
Systems observe their runtime behavior, learn, and 
take actions to meet desired goals
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Self-tuning Systems Must Monitor 
the Applications They Support 
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Currently, applications run as performance black-boxes:
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Outline

• Introduction/Motivation

• Application Heartbeats
– Idea
– Interface

• Experiments

• Conclusion
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The Application Heartbeats Idea

• At key intervals, apps issue a heartbeat using a simple function call

• Apps also register desired performance with other function calls

• The performance (heart rate) can be read within the application (a) or by 
another process (b)

• If performance is low the system adapts to increase performance
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Application Heartbeats Provide Standard 
API for Expressing Performance & Goals

• Application Heartbeats express goals and current performance
• System software can use Heartbeats to directly measure performance 
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Heartbeat API Functions

Function Parameters Description
heartbeat_initialize [int] window_size Initialize the heartbeat object to collect heartbeats.  Uses 

a sliding window of window_size to calculate current 
hear trate

heartbeat [int] tag Records a heartbeat with a given tag

hb_get_current_rate Returns the current heart rate averaged over the last 
window_size heartbeats

hb_set_target_rate [float] min, [float] max Sets the desired min and max heart rates for this app

hb_get_target_min_rate Returns the minimum desired heart rate

hb_get_target_max_rate Returns the maximum desired heart rate

hb_set_target_latency [float] min, [float] max, [int] 
tag1, [int] tag2

Sets the desired latency between heartbeats with tags 
tag1 and tag2

hb_get_min_latency [int] tag1, [int] tag2 Returns the minimum desired latency between two tags

hb_get_max_latency [int] tag1, [int] tag2 Returns the maximum desired latency between two tags

hb_get_history [int] n Returns all heartbeat information for the last n 
heartbeats

Heartbeat API allows direct communication of performance and goals
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Heartbeats Reference Implementations
http://groups.csail.mit.edu/carbon/heartbeats

• Files for distributed computing

• Performance1

– Throughput: ~0.900 Kbeat/s
– Latency: ~1000 µs

• Shared Memory for multicore

• Performance2

– Throughput: ~1500 Kbeat/s
– Latency: ~1.5 µs

1. Intel Xeon servers @3.16 GHz with :Linux NFS

2. Intel Xeon servers @ 3.16 GHz with Linux and POSIX shared memory

Callable from C/C++
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Outline

• Introduction/Motivation

• Application Heartbeats

• Experiments
– Heartbeat use within an application
– Heartbeat use by an external system
– Other systems using Heartbeats

• Conclusion
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Experiment 1: Internal Heartbeat Usage

• Experiment 1: Adaptive H.264 Encoder

• Goal: produce the highest quality video in real-time

• Method:
– A heartbeat is registered for each frame (frame rate = heart rate)
– Encoder reads heartbeat and changes algorithm to reach target  

• Results:
– Now the encoder is fast and still high quality
– Achieve target performance with barely visible quality loss



12

Example 1: Performance
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Example 1: Image Quality
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Example 2: External Heartbeat Usage

• Experiment 2: External System Reads Heart Rate and Assigns 
Cores

• Goal: Assign cores to keep performance within target range

• Method: Use PARSEC benchmarks
– Target heart rates set to be achievable using less than full number of 

cores

• Results:
– The scheduler keeps the applications running at the target speed 
– Scheduler can adapt to changes in the difficulty of the inputs



15

Example 2: bodytrack
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Example 2: streammcluster
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Example 2: x264
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Other Heartbeat Uses

• SpeedPress compiler and SpeedGuard runtime system
– The SpeedPress compiler discovers possible quality-of-service/ 

performance tradeoffs
• Achieve up to 2x speedup for 5% QoS loss

– The SpeedGuard runtime makes these tradeoffs dynamically in 
response to maintain a given heart rate in the face of 
environmental changes

• SmartLocks
– Subject of an upcoming SMART talk

More detail available in:

Hoffmann, Misailovic, Sidiroglou, Agarwal, Rinard. Using Code Perforation to Improve Performance, 
Reduce Energy Consumption, and Respond to Failures. MIT-CSAIL-TR-2209-042. August, 2009.
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Outline

• Introduction/Motivation

• Application Heartbeats

• Experiments

• Conclusion
– Request for feedback/usage
– Summary
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Request for Feedback

• Thanks to the reviewers for their feedback, but we need more…

• Heartbeat code is available online
http://groups.csail.mit.edu/carbon/heartbeats

• We need your feedback!
– If you have an self-tuning system service that could benefit from being 

able to directly measure an application’s performance try the interface
– Let us know what you think
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Summary

• Presented the Application Heartbeat interface
– API provides a standard means for an application to make its 

performance and goals known 

• Presented several experiments showing basic usage
– Several other systems at MIT are using Heartbeats in more 

advanced applications 

• Requested feedback from the community



Adaptive Scheduling Algorithm

• Take average heart rate over last 20 beats
• If heartbeat < target min

– Add a core
– Wait for 20 beats and reapeat

• Else if heartbeat > target max
– Remove a core
– Wait for 20 beats and repeat

• Else
– Repeat
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