
Application Heartbeats

Henry Hoffmann, Jonathan Eastep, Marco Santambrogio,
Jason Miller, Anant Agarwal

CSAIL
Massachusetts Institute of Technology

Cambridge, MA 02139

http://groups.csail.mit.edu/carbon/heartbeats

2

Outline

• Introduction/Motivation
– Problem: Monitoring applications in self-tuning systems
– Solution: Standard interface expresses performance/goals

• Application Heartbeats

• Experiments

• Conclusion

3

As System Complexity Increases,
Self-Tuning Systems Emerge

• System Complexity is Skyrocketing
– Multicore processors
– Parallel communication libraries
– Heterogeneous architectures
– Distributed, deep memory hierarchies
– Special-purpose functional units
– Unreliable components
– New constraints: power, energy, wire delay

• Application programmers must be
experts in systems and apps

Possible Solution: Self-Tuning Systems
Systems observe their runtime behavior, learn, and
take actions to meet desired goals

4

Self-tuning Systems Must Monitor
the Applications They Support

Disk
I/O

DevicesDRAM

App 2

App 1

App 3

miss
rate

voltage, freq,
precision

cache size,
associativity

po
w

erIPC, power,
temp

App 1

Core

Cache

App 2 App 3

Core

Cache

sp
ee

d

Application
Layer

Self-Tuning
Services

Layer

We propose Application Heartbeats as a standard API for applications to
specify their goals and performance to self-tuning system services

Scheduler,
Memory
manager, file
system

Operating
System

Currently, applications run as performance black-boxes:

5

Outline

• Introduction/Motivation

• Application Heartbeats
– Idea
– Interface

• Experiments

• Conclusion

6

The Application Heartbeats Idea

• At key intervals, apps issue a heartbeat using a simple function call

• Apps also register desired performance with other function calls

• The performance (heart rate) can be read within the application (a) or by
another process (b)

• If performance is low the system adapts to increase performance

7

Application Heartbeats Provide Standard
API for Expressing Performance & Goals

• Application Heartbeats express goals and current performance
• System software can use Heartbeats to directly measure performance

A
pp

lic
at

io
n

H
ea

rt
be

at
s

Disk
I/O

DevicesDRAM

App 2

App 1

App 3

miss
rate

voltage, freq,
precision

cache size,
associativity

po
w

eractivity,
power, temp

App 1

Core

Cache

App 2 App 3

Core

Cache

sp
ee

d

heartbeat,
goals

Heartbeat

App 1

Min heart rate = 10

Max heart rate = 100

Current heart rate = 75

App 2

Min heart rate = 29.5

Max heart rate = 30

Current heart rate = 29.8

App 3

Min heart rate = 0.5

Max heart rate = 1.5

Current heart rate = .2

Scheduler,
Memory
manager, file
system

Operating
System

Apps no
longer

performance
black-boxes

8

Heartbeat API Functions

Function Parameters Description
heartbeat_initialize [int] window_size Initialize the heartbeat object to collect heartbeats. Uses

a sliding window of window_size to calculate current
hear trate

heartbeat [int] tag Records a heartbeat with a given tag

hb_get_current_rate Returns the current heart rate averaged over the last
window_size heartbeats

hb_set_target_rate [float] min, [float] max Sets the desired min and max heart rates for this app

hb_get_target_min_rate Returns the minimum desired heart rate

hb_get_target_max_rate Returns the maximum desired heart rate

hb_set_target_latency [float] min, [float] max, [int]
tag1, [int] tag2

Sets the desired latency between heartbeats with tags
tag1 and tag2

hb_get_min_latency [int] tag1, [int] tag2 Returns the minimum desired latency between two tags

hb_get_max_latency [int] tag1, [int] tag2 Returns the maximum desired latency between two tags

hb_get_history [int] n Returns all heartbeat information for the last n
heartbeats

Heartbeat API allows direct communication of performance and goals

9

Heartbeats Reference Implementations
http://groups.csail.mit.edu/carbon/heartbeats

• Files for distributed computing

• Performance1

– Throughput: ~0.900 Kbeat/s
– Latency: ~1000 µs

• Shared Memory for multicore

• Performance2

– Throughput: ~1500 Kbeat/s
– Latency: ~1.5 µs

1. Intel Xeon servers @3.16 GHz with :Linux NFS

2. Intel Xeon servers @ 3.16 GHz with Linux and POSIX shared memory

Callable from C/C++

10

Outline

• Introduction/Motivation

• Application Heartbeats

• Experiments
– Heartbeat use within an application
– Heartbeat use by an external system
– Other systems using Heartbeats

• Conclusion

11

Experiment 1: Internal Heartbeat Usage

• Experiment 1: Adaptive H.264 Encoder

• Goal: produce the highest quality video in real-time

• Method:
– A heartbeat is registered for each frame (frame rate = heart rate)
– Encoder reads heartbeat and changes algorithm to reach target

• Results:
– Now the encoder is fast and still high quality
– Achieve target performance with barely visible quality loss

12

Example 1: Performance

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

Time (Frame Number)

H
ea

rt
 R

at
e

(F
ra

m
es

/s
)

Adaptive Encoder
Target Heart Rate

esa search

umh search

dia search

eliminated I4x4 mode in I-frames

eliminated I4x4 mode in P-frames
eliminated P8x8 mode in P-frames

eliminated sub-16x16 modes in P-frames
eliminated rate-distortion optimizations

reduced sub-pixel search

reduced sub-pixel search

13

Example 1: Image Quality

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500 600

Frame number

PS
N

R
 D

iff
er

en
ce

 (d
B

)

14

Example 2: External Heartbeat Usage

• Experiment 2: External System Reads Heart Rate and Assigns
Cores

• Goal: Assign cores to keep performance within target range

• Method: Use PARSEC benchmarks
– Target heart rates set to be achievable using less than full number of

cores

• Results:
– The scheduler keeps the applications running at the target speed
– Scheduler can adapt to changes in the difficulty of the inputs

15

Example 2: bodytrack

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250
Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/s
)

0

1

2

3

4

5

6

7

8

9

C
or

es

Heartrate
Target Min
Target Max
Cores

16

Example 2: streammcluster

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80
Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/s
)

0

1

2

3

4

5

6

7

8

C
or

es

Heartrate
Target Min
Target Max
Cores

17

Example 2: x264

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600
Time (Heartbeat)

H
ea

rt
 R

at
e

(b
ea

t/s
)

0
1
2
3
4
5
6
7
8
9
10

C
or

es

Heart Rate
Target Min
Target Max
Cores

18

Other Heartbeat Uses

• SpeedPress compiler and SpeedGuard runtime system
– The SpeedPress compiler discovers possible quality-of-service/

performance tradeoffs
• Achieve up to 2x speedup for 5% QoS loss

– The SpeedGuard runtime makes these tradeoffs dynamically in
response to maintain a given heart rate in the face of
environmental changes

• SmartLocks
– Subject of an upcoming SMART talk

More detail available in:

Hoffmann, Misailovic, Sidiroglou, Agarwal, Rinard. Using Code Perforation to Improve Performance,
Reduce Energy Consumption, and Respond to Failures. MIT-CSAIL-TR-2209-042. August, 2009.

19

Outline

• Introduction/Motivation

• Application Heartbeats

• Experiments

• Conclusion
– Request for feedback/usage
– Summary

20

Request for Feedback

• Thanks to the reviewers for their feedback, but we need more…

• Heartbeat code is available online
http://groups.csail.mit.edu/carbon/heartbeats

• We need your feedback!
– If you have an self-tuning system service that could benefit from being

able to directly measure an application’s performance try the interface
– Let us know what you think

21

Summary

• Presented the Application Heartbeat interface
– API provides a standard means for an application to make its

performance and goals known

• Presented several experiments showing basic usage
– Several other systems at MIT are using Heartbeats in more

advanced applications

• Requested feedback from the community

Adaptive Scheduling Algorithm

• Take average heart rate over last 20 beats
• If heartbeat < target min

– Add a core
– Wait for 20 beats and reapeat

• Else if heartbeat > target max
– Remove a core
– Wait for 20 beats and repeat

• Else
– Repeat

22

	Application Heartbeats
	Outline
	As System Complexity Increases, �Self-Tuning Systems Emerge
	Self-tuning Systems Must Monitor �the Applications They Support
	Outline
	The Application Heartbeats Idea
	Application Heartbeats Provide Standard API for Expressing Performance & Goals
	Heartbeat API Functions
	Heartbeats Reference Implementations�http://groups.csail.mit.edu/carbon/heartbeats
	Outline
	Experiment 1: Internal Heartbeat Usage
	Example 1: Performance
	Example 1: Image Quality
	Example 2: External Heartbeat Usage
	Example 2: bodytrack
	Example 2: streammcluster
	Example 2: x264
	Other Heartbeat Uses
	Outline
	Request for Feedback
	Summary
	Adaptive Scheduling Algorithm

