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Abstract. Machine learning has shown its capabilities for an automatic gen-
eration of heuristics used by optimizing compilers. The advantages of these
heuristics are that they can be easily adopted to a new environment and in some
cases outperform hand-crafted compiler optimizations. However, this approach
shifts the effort from manual heuristic tuning to the model selection problem
of machine learning – i. e., selecting learning algorithms and their respective
parameters – which is a tedious task in its own right.
In this paper, we tackle the model selection problem in a systematic way. As
our experiments show, the right choice of a learning algorithm and its parame-
ters can significantly affect the quality of the generated heuristics. We present
a generic framework integrating machine learning into a compiler to enable an
automatic search for the best learning algorithm. To find good settings for the
learner parameters within the large search space, optimizations based on evolu-
tionary algorithms are applied. In contrast to the majority of other approaches
aiming at a reduction of the average-case execution time (ACET), our goal is
the minimization of the worst-case execution time (WCET) which is a key pa-
rameter for embedded systems acting as real-time systems. A careful case study
on the heuristic generation for the well-known optimization loop invariant code

motion shows the challenges and benefits of our methods.

1 Introduction

Optimizing compilers transform a program written in a source language into a seman-
tically equivalent program in a target language. The generated code should exhibit a
high performance. Since finding optimal solutions to compiler optimizations is provably
hard, compiler writers are forced to use heuristics as approximate solutions. The devel-
opment of heuristics for compiler optimizations is a tedious task requiring both a high
amount of expertise and an extensive trial-and-error tuning. The reasons are twofold.
First, heuristics often use simplified architecture models of complex systems, which do
not sufficiently capture all relevant architectural features. Second, compiler optimiza-
tions are typically executed within a sequence of interfering optimizations. Since the
mutual interactions are hardly predictable, compiler writers develop heuristics based
on conservative assumptions. Such heuristics avoid negative effects but also prevent
the exploration of the optimization potential.

⋆ The research leading to these results has received funding from the European Commu-
nity’s Artist Design Network of Excellence and from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant agreement no 216008.
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Machine learning (ML) techniques have recently raised considerable research in-
terest in the compiler community since they can help to automatically find good op-
timization heuristics. Given a set of characteristics (called static features) about the
code to be optimized, machine learning tools automatically learn a mapping from these
features to heuristic parameters. For today’s rapidly evolving processor market, these
machine learning based (MLB) heuristics offer two advantages. First, they often out-
perform hand-crafted heuristics [21]. Second, they can be automatically adopted to
new environments.

A central questions in the heuristic generation is that of model selection which cov-
ers the choice of the learning algorithm, its parameters, and the features. Over the
last decades, a vast spectrum of different machine learning algorithms was developed.
The learner selection for the generation of high-performance heuristics is not trivial
and becomes even more complicated since most learners are equipped with numer-
ous parameters considerably affecting the learner’s behavior. The consequence is that
typically one or two learners are applied using standard parameter settings [18, 15, 6].
However, this approach does not exploit the full learners’ potential and possibly misses
optimization opportunities.

In this paper, we systematically explore the performance of different learners and
their parameters for compiler heuristic generation. We use the open-source machine
learning tool RapidMiner [17]. It includes not only a large number of learning algo-
rithms, evaluation procedures, and feature transformation operators, but also operators
for self-optimization regarding, e. g., parameter settings of learning algorithms. Since
the true quality of learners depends on the quality of their predictions [12], the consid-
ered learners are directly involved in the model selection run on real-life benchmarks.
Using this approach allows to find the best learner with the highest performance in-
crease for a particular optimization.

While machine learning was studied in the past in the context of ACET mini-
mization, this work focuses on embedded systems acting as hard real-time systems.
Besides efficiency requirements, these systems are characterized by their critical tim-
ing constraints which are expressed by the worst-case execution time. Especially for
safety-critical application domains, such as automotive and avionics, the satisfaction
of the WCET must be guaranteed to avoid system failure. Thus, we concentrate on an
automatic generation of MLB heuristics that promise the highest WCET improvement.
The main contributions of this paper are as follows:

1. For the first time, we address the well-known problem of selecting an appropriate
learning algorithm for the generation of optimization heuristics [20] in a systematic
way.

2. We evaluate six popular learning algorithms. The study indicates that different
learners and their parameter settings significantly affect the program performance.

3. Since the search space for the learners is typically too large for an extensive search,
we apply a parameter optimization based on evolutionary algorithms.

4. To demonstrate the efficiency of our approach, MLB heuristics for the well-known
optimization loop invariant code motion are generated. In contrast to previous
works, our work aims at a WCET minimization.

5. Due to the integration of a machine learning tool into the novel WCET-aware
compiler framework, the exploitation of a vast range of learning techniques is es-
tablished. Also, the framework can be easily adopted to generate heuristics for
other compiler optimizations.
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6. The presented concepts can be easily adapted to ACET optimizations. Therefore,
our work can be seen as a general contribution to compiler research independent
of the considered objective.

The rest of this paper is organized as follows: Section 2 gives a survey of the related
work. In Section 3, an overview of the current state of machine learning employed within
a compiler is provided and problems arising from the selection of learners are discussed.
To overcome these problems, we propose a new methodology for an automatic selection
of parametric learners in Section 4. The optimization loop invariant code motion is
introduced in Section 5. A description of our experimental environment and results
achieved on real-world benchmarks are given in Sections 6 and 7, respectively. Finally,
Section 8 summarizes this paper and gives directions for future work.

2 Related Work

ACET Minimization by Machine Learning: The application of machine learning
techniques in compiler design was mainly studied in the context of the ACET min-
imization. Vaswani [23] uses empirical regression models to characterize interactions
between optimizations in the GCC compiler. The search for good compiler optimiza-
tion sequences, also called iterative compilation, has been thoroughly studied in the
past. Kulkarni [11] uses genetic algorithms to avoid an exhaustive search. In [3], a
characterization of the search space is used to find good compilation sequences more
efficiently. Leather [13] applies fixed sampling plans while Cavazos [5] exploits perfor-
mance counters to accelerate the search. In contrast, Agakov [2] reduces the number of
evaluations using machine learning approaches by focusing on promising areas of the
search space.

MLB Heuristic Selection for ACET Minimization: A vast application field
of machine learning in compilers is the automatic generation of optimization heuristics,
known in literature as heuristic selection. Monsifrot [18] used a supervised classification
to generate heuristics for loop unrolling which decide whether unrolling should be
performed. This approach was extended by Stephenson [15] to find MLB heuristics that
predict the best unrolling factor for a given loop. Machine learning techniques (e. g.,
reinforcement learning) were also studied in the context of instruction scheduling [6].
In [12], a grammar-based mechanism using genetic programming is presented that
automatically extracts features for machine learned heuristics.

WCET Reduction: Typically, compiler optimizations aim at an automatic re-
duction of the ACET. With the growing importance of embedded systems acting as
real-time systems, the worst-case execution time must be considered as a crucial ob-
jective. WCET-aware compilation is a novel research area with an increasing academic
and industrial interest. Approaches in this domain rely on feedback data, the WCET,
which is provided by a static analyzer. A sophisticated WCET analyzer, also used in
this work, is aiT [1]. Most approaches to WCET minimization operate on assembly
level and exploit memory hierarchies. For example, the authors of [4] presented an al-
gorithm for static locking of I-caches based on a genetic algorithm while compile-time
cache analysis combined with static data cache locking was presented in [24]. Other
approaches exploit fast scratchpad memories (SPM) for WCET minimization. Greedy
algorithms for a WCET-aware SPM allocation of data are presented in [7], while opti-
mal approaches based on an ILP formulation are explored for data and program code
in [22] and [8], respectively.
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Fig. 1. Overview of Machine Learning Based Compiler Heuristic Generation

WCET Minimization by Machine Learning: The potential of machine learn-
ing for WCET minimization is sparsely explored within today’s literature with only a
few publications. Zhao [26] used a genetic algorithm for the search of standard low-
level optimization sequences that aim at an effective reduction of the program WCET.
In [14], supervised learning was used to infer heuristics for function inlining. The latter
paper is most related to our current work since the objective of finding MLB heuristics
for WCET reduction is pursued. However, there are also several significant differences.
Most importantly, in [14] just a single supervised learner with its standard parameters
was considered. Moreover, contrary to our compiler framework providing a seamless
integration of a machine learning tool, the related paper used a compiler that was com-
pletely decoupled from the ML tool. Thus, the generated inlining heuristics had to be
integrated into the compiler by hand. In addition, the optimizations are performed at
different abstraction levels of the code. Function inlining was considered at the source
code level whereas we consider loop invariant code motion as an optimization performed
at assembly level.

3 Machine Learning in Compilers

In this section, an overview of supervised machine learning techniques in the compiler
design is provided. Section 3.1 summarizes the common approach of incorporating ma-
chine learning techniques into a compiler and describes the workflow required to auto-
matically generate a heuristic. A shortcoming of this workflow is the model selection
problem which will be discussed in Section 3.2.

3.1 Current Workflow for Heuristic Generation

The heuristic generation begins with the obvious decision for which compiler optimiza-
tion an improved heuristic should be generated. An overview of incorporating machine
learning techniques into a compiler framework is depicted in Figure 1. For a repre-
sentation of the program by internal compiler data structures, such as high- or
low-level intermediate representations or abstract syntax trees, the developer has to
decide which features best characterize the parts of the program to be optimized. The
features must be transformed into a proper vector representation serving as input for
the ML tool. This process is called feature extraction. In addition, for each feature
vector a label representing the desired output, e. g., YES/NO, has to be determined.
This phase transforms a set of benchmarks to become the training set. Next, a selec-
tion of a learning algorithm and its parameters is required. The machine learning
community has developed a large portfolio of different learners over the last decades.
Moreover, many learners have several user-defined parameters, leading to models with
different performance. Due to the large number of possible combinations, the selection
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of the appropriate learning algorithm is not straightforward. Finally, the chosen classi-
fier (learner) induces a prediction model representing a heuristic which can be used
to predict if/how the considered optimization should be performed for unseen data.

3.2 Problem Specification: Model Selection

A key aspect of the framework shown in Figure 1 is the problem of selecting a learning
algorithm and parameters such that the induced model performs best in terms of the
considered objective, e. g., the WCET. Due to the complex structure of learning algo-
rithms and the non-trivial impact of their parameters, the performance of the induced
model cannot be predicted statically with sufficient precision. Rather, a heuristic must
be generated and its performance must be evaluated on a set of benchmarks [12].

As a consequence, the current state for the MLB heuristic generation can be seen
as a trial-and-error approach. The compiler writer chooses a learner, induces a pre-
diction model and evaluates the impact of the generated heuristic on benchmarks. If
the heuristic did not yield the expected performance results, the compiler writer either
tunes the learner parameters or even selects another learner and repeats the evaluation
hoping for better results. Obviously, repeatedly evaluating different learners manually
is time-consuming, error-prone, and it is often not clear if further tuning pays off. In
literature [18, 15, 6, 12], typically one or two learners are employed without a detailed
reasoning why exactly these algorithms including their parameters were chosen.

The exploitation of machine learning for heuristic generation is attractive since it
relieves the compiler writer from the tedious task of developing heuristics manually and
it also enables an easy and efficient adoption to changes in the compiler framework or
the underlying system. However, the effort is now shifted from the manual tuning of
heuristics to the model selection problem of learning. Here, we propose a new framework
which systematically evaluates models induced by different learners and parameter
settings through integration of a compiler and an ML tool.

4 Automatic Model Selection

In this section, we describe our methodology for an automatic selection of the best
model. In Section 4.1, we summarize the key characteristics of the machine learning
algorithms that we consider for comparison. In Section 4.2, performance evaluation of
supervised learners is discussed. As will be described in Section 4.3, this evaluation can
be exploited for evolutionary parameter optimization and the final model selection. For
a detailed discussion of the learning methods, see standard literature [10].

4.1 Learning Algorithms

In this paper, we consider popular learning algorithms which have been successfully
applied in the past for various applications and that rely on different principles.

Decision Trees partition the examples into axes-parallel rectangles by recursively
splitting the training set into sub-trees. Frequently, information gain, based on the
entropy (impurity) of a node, is used as splitting criterion. Additionly, there might
be stopping criteria like the maximal depth of a tree and thresholds for the minimal
number of examples in a node to split it further (minimal size for split), the minimal
number of examples in a leaf (minimal leaf size), the minimal information gain for
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splitting (minimal gain), and the number of alternative nodes considered (prepruning
alternatives). Furthermore, a confidence level for post tree pruning can be specified.

Random Forests consist of several unpruned decision trees which are constructed
from different bootstrap samples. The algorithm uses a randomly chosen subset of
features to find the best split for each node and it is robust against overfitting. Like
decision trees, random forests can still classify new examples very fast by majority
voting over the predictions made by each tree in the forest. Only two parameters have
to be optimized: the number of trees in the forest and the number of considered features
for node splitting.

Linear Support Vector Machines (SVM) find a hyperplane which separates
the examples such that those with the label y = +1 are in the positive half and those
with the label y = −1 are in the negative half of the instance space. The hyperplane
is determined by β · x + β0. The learning task is to estimate β and β0, such that the
error is minimal (i. e., the instances are placed on the correct side of the hyperplane)
and that the learned model is of minimal complexity (i. e., the distance between the
closest instance to the hyperplane is maximal). Those examples which are closest to the
hyperplane are called support vectors. In order to allow some misclassified instances,
the soft margin SVM offers a parameter C which gives a weight to the error as opposed
to the complexity. Internal optimization compares all examples pairwise using a kernel
function. For the linear SVM, the kernel function is the dot product xi · xj .

SVMs with RBF kernel operates on not linearly separable data by including
another kernel function into the SVM. The radial basis function (RBF) covers areas
of instances by a Gaussian distribution: KRBF (xi, xj) = exp(γ(xi, xj)

2). Hence, the
parameter of the Gaussian’s width, γ, is decisive: for a low γ, almost every example is
covered by its own RBF region, for a large γ, interesting regions cover a set of examples.

k-Nearest Neighbor (kNN) stores all examples and classifies a new input by
looking at k most similar examples. The majority class of these k examples becomes
the predicted class. If k is too small, the error is reduced, but the prediction becomes
biased, e. g., by outliers. If k is too large, the error might also become large. Thus, the
setting of the appropriate k is crucial for the learner’s performance.

Naive Bayes predicts for an example x the class y such that the likelihood
P (y|x) is maximal. According to Bayes’ theorem, it suffices to maximize the probability
P (X |yi)P (yi), since the a priori probability of the labels in Y (e. g., P (yi = Y ES) or
P (yi = NO)) are the same for all training examples. Implicitly, Naive Bayes assumes
the independence of all example’s features. Due to its simple calculation, Naive Bayes
is a very fast algorithm and has typically no parameters for configuration.

4.2 Performance Evaluation

There are different metrics for performance evaluation of learners. Which metric to
choose, depends on the requirements imposed by the exploiting system. The standard
performance measurement of learning algorithms is accuracy. It is calculated on the
basis of the test set. Examples xn+1, xn+2, ..., xn+m are handed over to the learned
function f , delivering ŷ = f(x). Then, the known true value y is compared to the
predicted ŷ. Drawing training and test set under the same distribution D leads to
an estimate of the true performance of the learner indicating, e. g., how often ŷ = y.
The estimation is determined by generating a set of examples and splitting it into
training and test set. This is done in cross validation: N -fold cross validation randomly
partitions an example set into N sets, uses N−1 sets for training and the remaining set
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for testing. The estimated performance of a learner is the average of the measurements
of the N training and test cycles.

In case of compiler optimizations, program run time is crucial. For embedded sys-
tems acting as real-time systems, the main goal is to find a learner that yields highest
WCET reduction. The WCET of a program is the longest execution time that can ever
occur. Since the input to the program leading to the worst-case behavior is often not
known and an exhaustive testing of all inputs is not feasible, measurements are not
suitable for a WCET determination. To obtain the WCET, formal methods are used
instead. The control flow graph of the program is statically analyzed taking addition
information from the user, like loop iteration counts, into account. To cover all possible
input data, abstraction from concrete values is used. Thus, the determination of the
actual WCET is lifted to the derivation of an upper bound on the execution time of
the program. In this paper, we use the term WCET as a synonym for a safe WCET
estimation of the actual WCET.

The performance evaluation of a learner based on the accuracy is not appropriate
since it does not allow to draw conclusions about the program’s WCET.

Example 1: Assume that a learning model acting as a compiler heuristic has to take
three optimization decisions. The costs (impact on program’s WCET in cycles) for the
correct prediction/misprediction of the decisions are: CostA = 1/− 1, CostB = 1/− 1,
and CostC = 10/−10. Predicting A and B correctly, but not C, results in an accuracy
of 66, 6% and a negative impact on the WCET of (1 + 1 − 10 =) − 8 cycles, while
predicting just C correctly yields a worse accuracy of 33, 3% but a positive impact on
the WCET of (−1 − 1 + 10 =) 8 cycles.

Due to this missing correlation between the accuracy and the program (worst-case)
execution time, learners should be evaluated by directly measuring the program per-
formance but not their accuracy.

Moreover, the classical N -fold cross validation has to be applied in a modified
fashion for the performance evaluation of learners used as optimization heuristics. For
each of the N benchmarks of the example set, all examples belonging to one bench-
mark are excluded (test set), a ML model using the remaining examples (training
set) is learned and this model is finally applied by a compiler to evaluate its im-
pact on the WCET of the excluded benchmark. In more detail, the compiler com-
putes the WCET WCETMLB for this benchmark using the new MLB heuristic and
compares this value against a reference value WCET ref . If ∆WCET n < 1, with
∆WCETn = WCETMLB/WCET ref , then the MLB heuristic was successful. The
final performance is determined by performing the cross validation N times and com-
puting the average relative WCET: performance =

∑N

i=1
∆WCET n/N . Using this

benchmark-wise cross validation is a common approach to estimate the generalization
ability of a learning algorithm, i. e., by applying the models to unseen benchmarks it
can be inferred how well new examples will perform using this model.

4.3 Parameter Optimization

Exhaustively searching over all combinations of user-defineable classifier parameters is
not feasible. We therefore apply an evolutionary strategy [16]. Our approach is depicted
in Figure 2. Each individual pn in a population of size (pop size) represents a combi-
nation of parameter values, e. g., C and γ in case of the SVM with RBF kernel. In the
beginning, the parameters of each individual are initialized randomly. To create a new
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generation, a fraction of the individuals repeatedly takes part in a tournament selection
which chooses fittest individuals (as parents) as long as pop size individuals are selected.
In a crossover step, individuals mate with a specified probability (crossover prob). They
produce children that contain the exchanged parameter values of their parents. These
children are added to the current population. Then, all individuals are cloned and the
clones are mutated by adding values from a Gaussian distribution to all parameters.
The fitness of each individual is evaluated by a cross-validation which is based e. g.,
on the accuracy or, as in our case, on the reduction of the program’s WCET. More
accurately, for each individual a machine learning model is induced based on N − 1
benchmarks and evaluated for the left-out benchmark. This performance computa-
tion is repeated N times and its average value represents the quality of a parameter
combination. The whole process maintains the best individuals (elitist selection) and
terminates if either a specified maximum number of generations (max gen) is reached
or there was no improvement over imp generations.

5 Case Study: Loop Invariant Code Motion

Loop invariant code motion (LICM) is a well-known ACET optimization. It recognizes
computations within a loop that produce the same result each time the loop is executed.
These computations are called loop invariant code and can be moved outside the loop
body without changing the program semantics [19].

Definition 1. An instruction i is said to be loop invariant iff: (a) its operands are
constants, or (b) all instructions that define the operands of instruction i are outside
the loop, or (c) all instructions that define the operands of instruction i are themselves
loop invariant.

LICM can be applied at the source code level to expressions, or at the assembly
level, in particular to addressing computations that access elements of arrays. The
positive effects are a reduced execution frequency of the moved loop-invariant code.
Another positive effect of the optimization is that it might shorten the live ranges of
variables leading to a decreased register pressure.

Besides these positive effects on the code, LICM may also degrade performance.
This is mainly due to two reasons. First, the newly created variables to store the loop-
invariant results outside the loop increase the register pressure in the loops since their
live range spans across the entire loop nest. This might possibly lead to additional
register spill code. This is an issue especially relevant for embedded systems with a
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small register file. For example, the TriCore processor, that is also used in this work,
has 8 data and 8 address registers serving as general purpose registers. The remaining
8 data and address registers have special purposes, like storage of function arguments
or return addresses, and are thus only partially exploited by the register allocation.
Second, moving the loop invariant code might lengthen other paths of the control flow
graph when the invariants are moved from a less executed to a more frequently executed
path, e. g., moving instructions above a loop’s zero-trip test.

Issues like the impact on the register pressure emphasize the dilemma compiler
writers are faced with during the development of good heuristics. Performing loop
invariant code motion has conflicting goals and it can not be easily predicted if this
transformation is beneficial. LICM heuristics are also missing in standard compiler
literature [19]. In addition, most compilers do not model the complex interactions
between different parts of the code and the loop invariants, but perform LICM whenever
invariants are found without using any heuristics that might avoid the adverse effects.

We tackle the difficult task of finding heuristics for loop invariant code motion using
machine learning. The goal is to find a heuristic that exploits the positive effects of
LICM on the one hand and prohibits the transformation for adverse situations on the
other hand. In contrast to related works dealing with optimizations for which different
heuristics are well-studied, e. g., loop unrolling, we have no hints which strategies for
the LICM heuristic might be promising.

6 Experimental Environment

To demonstrate the practical use of our approach, experiments on a large number of
different benchmarks were conducted. The 39 benchmarks come from the test suites
DSPstone, MediaBench, MiBench, MRTC WCET Benchmark Suite, UTDSP and Net-
Bench. On the one hand, the benchmarks are used to construct the data set for machine
learning (cf. Section 6.2), which serves as training data for the LICM heuristic gener-
ation. On the other hand, they are used in the cross validation phase to evaluate the
performance of the heuristic for WCET minimization. The training set based on these
benchmarks comprises 3491 examples and its construction took about 50 hours on two
Intel Xeon 2.13GHz quad cores. However, please note that the data set construction
has to be performed once off-line.

All experiments were performed in the WCET-aware C compiler WCC [9] for the
Infineon TriCore TC1796 processor. The framework including the integration of the
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machine learning tool RapidMiner is depicted in Figure 3. The compiler shown on
the right-hand side of the figure is provided with C source files. After parsing the C
code, it is translated into the high-level intermediate representation ICD-C. At this
level, standard compiler analyses and source code ACET optimizations (not shown
in the figure) can be applied. Next, the code selector translates the code into the
low-level intermediate representation LLIR. At this abstraction level, again different
analyses and optimizations are available. In total, the compiler features 43 different
optimizations which are activated in the highest optimization level O3. Loop invariant
code motion, which is a low-level optimization within WCC, is performed as one of
the last optimizations in the optimization chain. Since it is executed before register
allocation, LICM operates on low-level code which does not contain physical registers
but temporary variables (aka. virtual registers). For benchmarking, O3 is enabled, thus
our WCET-aware LICM operates on highly optimized code.

The key feature of the WCC compiler is the tight integration of the static WCET
analyzer aiT into the compiler backend. This way, WCET timing data is available in
the compiler backend and can be exploited for analyses and optimizations.

6.1 Available Features

The presented compiler framework for the automatic selection of machine learning
models is generic, i. e., it can be exploited to generate heuristics for a large number of
low-level optimizations without any major adaption. To enable this option, a large set of
features extracted from the compiler must be provided. These features must be chosen
such that they cover a wide range of various characteristics of the program. Our feature
extractor (cf. Figure 3) generates 73 features in total which describe characteristics
of single instructions, basic blocks, loops, or functions depending on which low-level
construct is passed to the feature extractor. The features can be classified as follows
(given some examples):

1. Structural features: Type of instruction (arithmetic, load/store, jumps, floating
point, etc.), size of given construct, number of block successors/predecessors,
number of operands in given construct

2. Liveness analysis related: Liveness information (live-in and live-out) of in-
struction, number of defs and uses in instructions/blocks, information about reg-
ister live times (for register pressure estimation)

3. Loop features: Loop nest levels, loop iteration counts
4. Misc: Length of critical path in loop, outcome of static branch prediction for

jump instruction
This set of features is variable, i. e., depending on the application all features or just a
subset can be used. The feature extractor was designed in a flexible way such that new
features can be easily added. For learning algorithms that can only handle numerical
values, nominal features are first transformed into discrete numerical values and then
normalized by a linear transformation into [0, 1].

6.2 Construction of Training Set for WCET-aware LICM

For the loop invariant code motion, 39 benchmarks are involved in the training set
construction. We used WCC’s feature analyzer with the full set of all 73 features. Each
example of the training set was created by analyzing each loop invariant instruction
iinv separately. To do so, corresponding features for iinv as well as for the basic block
bpred, to which iinv is moved, were extracted. The label was determined by estimating
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Table 1. Learner-specific parameters, the explored value ranges by the evolutionary search,
and the best found parameter combinations yielding highest WCET reduction.

Parameter Range Best Parameter Range Best

Decision Trees SVM with RBF kernel

max. depth [1;20] 16 C [0;10,000] 2405.15
min. split size [4;100] 19 γ [0;74] 30.08
min. leaf size [2;100] 31 Linear SVM

min. gain [0;0.03] 0.014 C [0;10,000] 616.11
prepr. altern. [3;10] 4 kNN

confidence [0.1;0.5] 0.476 k [3;100] 11

Random Forests Naive Bayes

no of trees [1;100] 7 no configurable parameters

features [1;73] 39

the WCET of region reg before and after LICM. The region reg is defined either as
the loop to which bpred belongs to or, if iinv was moved completely outside a loop, reg
represents the function were iinv is located. Using outer loops for reg instead of the
entire function makes the label extraction more reliable since it captures the effects of
LICM more precisely. A decreased WCET after LICM means that the transformation
is beneficial (label YES ) for iinv in its current context (bpred). If the WCET does not
change, also the label YES is used to perform such code motion which possibly enable
optimization potential for subsequent LICM candidates. If a WCET increase due to
adverse LICM effects was identified, the feature vector is labeled with NO to indicate
that the code motion should be avoided for similar cases. For the next example, iinv is
kept in its new position and the next loop invariant instruction is considered.

6.3 Evolutionary Parameter Optimization for WCET-aware LICM

After the construction of the training set for the loop invariant code motion using ex-
clusively the WCC compiler, the evolutionary parameter optimization for the selection
of the best ML model requires a communication with RapidMiner.

The parameter optimization is performed for each of the six considered machine
learners to find the model yielding the highest WCET reduction. The evolutionary
algorithm generates different valid parameter combinations which are employed for the
fitness evaluation. For our experiments we used the following parameters for the evo-
lutionary algorithm: population size pop size=20, number of generations max gen=5,
tournament selection performed on 30% of population size with a crossover probability
crossover prob=90%, and termination if no improvement for imp=2 generations was
observed (cf. Section 4.3).

The fitness evaluation is based on the benchmark-wise cross validation (cf. Sec-
tion 4.2). For a given combination of parameters determined by the evolutionary al-
gorithm, a model based on the training set of benchmarks is learned and validated
against the benchmark from the test set, i. e., WCC computes the WCET WCETMLB

for this benchmarks using O3 and the LICM heuristic based on the current model.
This step is repeated for each of the N=39 benchmarks. To determine the quality of
the model, WCETMLB is compared against a reference value WCETref represent-
ing the WCET for this benchmark using O3 and disabled LICM. Finally, the fitness
value which represents the quality of a given parameter combination is computed by:
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Table 2. Performance results for different parameter combinations as found by evolutionary
search.

Learner Best Worst Avg. Acc.

Decision Tree 96.17% 99.78% 97.42% 63.16%
Random Forests 96.60% 98.96% 97.69% 60.43%
Linear SVM 98.24% 98.62% 98.34% 53.50%
SVM with RBF kernel 95.36% 98.80% 97.12% 57.78%
kNN 97.32% 98.94% 97.98% 67.48%

Naive Bayes 98.17% 98.17% 98.17% 54.31%

fitness =
∑N

i=1
∆WCETn/N . Obviously, this is a minimization problem, with smaller

fitness being better.
The output of the evolutionary parameter search is the machine learning model us-

ing the detected parameter settings that led to the highest WCET reduction. Our
framework automatically performs the parameter optimization for each considered
learner to find the model that exhibits the overall best WCET improvement. This
model (heuristic) is finally integrated into the compiler. For future use of the novel
WCET-aware LICM, the WCC compiler performs a feature extraction and consults
RapidMiner to retrieve a prediction whether the considered loop invariant instruction
promises a WCET reduction. The communication between WCC and RapidMiner is
established in an efficient way, thus the additional overhead is marginal.

7 Results

In a first phase, the machine learning model selection was performed to find the best
learner. Table 1 gives an overview of the considered learners, their parameters, and the
explored parameter values by the evolutionary search (column Range). Please note that
Naive Bayes does not provide any parameters to be optimized. However, the algorithm
was considered due to its popularity and its specific functionality.

Table 2 summarizes the results of the evolutionary parameter optimizations for the
six considered learners. The results in the second, third, and fourth column represent
the performance values, i. e., the averaged relative WCET results obtained during the
benchmark-wise cross validation (cf. Section 6.3) when comparing the WCET using
the MLB heuristic against the code compiled with O3 and without LICM. In more
detail, the second column (Best) represents the highest improvement of the WCET
observed during the evolutionary search of each learner. These values were achieved
using the parameter combinations shown in the third column of Table 1. For example,
95.36% for SVM with RBF kernel means that the WCET was reduced on average by
4.64%. The third and fourth column (Worst, Avg.) of Table 2 depict the worst and
average WCET reduction (over all runs) found by the evolutionary search. Finally,
the last column (Acc.) describes the classification accuracy that was computed for the
parameter combination that lead to the best WCET reduction shown in the second
column. The bold numbers point out the best results observed for all learners.

Three main conclusions can be drawn from this table. First, it can be seen that
the WCET improvements significantly vary between the learners. For the considered
learners and their best parameters, the relative WCET for the 39 benchmarks varies
for the best parameters between 95.36% for SVM with RBF kernel as best model
and 98.24% for the Linear SVM. Thus, a comparison of various learners is required
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Fig. 4. Progress of Evolutionary Parameter Optimization

for the determination of the best model. Even though the difference of 2.9% might
seem small, it should be taken into account that standard LICM achieves on average a
WCET reduction of merely 0.6% (as will be shown later). Thus, the variation between
the learners can be considered substantial and for other compiler optimizations with
stronger effects on the program performance even considerably larger differences can be
expected. Note also that the variance of 2.9% can not be referred to noise since statically
computed WCET estimations are deterministic as the analysis always assumes the
same worst-case run-time environment. Second, a comparison between the second
and third column in Table 2 emphasizes the importance of a parameter optimization.
For example, the choice of parameter settings for the learner Decision Tree generates
LICM heuristics for which the relative WCET ranges between 96.17% and 99.78%,
i. e., selecting inappropriate parameters may waste up to 3.61% on average of the
optimization potential w. r. t. the WCET reduction. Third, a comparison between
the WCET performance in the second column and the accuracy in the last column
indicates that there is no direct correlation between these two performance metrics (cf.
Section 4.2). For example, the highest accuracy of 67.48% was achieved for the kNN
learner, while the average WCET reduction of 2.68% is poor compared to the other
learners. Thus, finding the best model can be only accomplished when the model is
directly evaluated against the considered objectives, in our case the WCET.

Figure 4 depicts the progress of the evolutionary parameter optimizations over 5
generations for the best learner (SVM with RBF kernel). The plot depicts the fittest
individual (parameter combination) in each generation. As can be seen, the perfor-
mance of the fittest individual is successively improved in the first four generations
before no better parameters can be found in the last generation. This monotonically
decreasing curve suggests that the evolutionary parameter optimization is the right
choice for the search of good parameter settings in a large space. Also, a compar-
ison between the performance of 98.71% for the standard SVM parameter settings
(C = 0, γ = 1) and the performance of 95.36% for the best parameter combination
found by the evolutionary search emphasizes the benefits of this approach. In order to
evaluate the effectiveness of our machine learning based LICM heuristic, we measured
the impact of our MLB heuristics for LICM on the WCET estimates (WCET EST )
of the considered 39 benchmarks. Figure 5 shows a comparison between the standard
ACET LICM (Standard-LICM ) and our optimization (MLB WCET-LICM ) using the
best heuristic generated by the SVM with RBF kernel learner. The reference mark of
100% corresponds to the WCET estimates for O3 with disabled LICM. Due to the
challenges for the manual generation of an appropriate heuristic (cf. Section 5), the
standard approach for LICM in many compilers is the application of the code trans-
formation whenever possible. The light bars representing the MLB-LICM show WCET
estimates computed during the benchmark-wise cross validation. By learning a model
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Fig. 5. Relative WCET Estimates for Standard and MLB LICM

and validating it on the excluded benchmark, the light bars indicate how good the
heuristic performs on unseen data. As can be seen in the figure, in most cases the new
MLB-LICM outperforms the standard LICM optimization, with up to 36.98% for the
fir benchmark from the MRTC WCET Benchmark Suite. On average, the standard
LICM achieves a WCET reduction of merely 0.56%, while our MLB-LICM reduces the
WCET by 4.34%, as already shown in Table 2.

Most of the time for the evolutionary search was consumed by the WCET analyses.
For one run of the benchmark-wise cross validation, i. e., inducing 39 models and using
them for the WCET estimation of each benchmark in the test set, about 50 minutes on
a single Intel Xeon 2.13GHz core of a system with 8GB RAM were required. Depending
on the development of the evolutionary search, the maximal run time of 146 hours was
observed for the evaluation of the learner Random Forests.

8 Conclusions and Future Work

Recent work has shown that machine learning can be exploited for the automatic
generation of high-performance and easily adaptable compiler optimization heuristics.
A central questions in this domain is that of model selection, i. e., which learners and
their respective parameters should be used. This paper is the first one to address
this well-known problem in a systematic way. We explore the potential of six popular
learning algorithms using an evolutionary parameter optimization. In a case study, we
exploit our novel compiler framework for the generation of heuristics for loop invariant
code motion aiming at a WCET reduction. In contrast to standard LICM yielding
an average WCET reduction of 0.56% on 39 real-life benchmarks, our new heuristics
achieve a WCET reduction of 4.34% on average.

In the future, we intend to integrate further learning algorithms into our framework
to explore their potential. Also, these algorithms require further evaluation to figure
out why some learners work well or why not. Another important issue for future work is
the integration of further compiler optimizations, e. g., register allocation, to study the
generality of our methodology. The investigation of optimizations with bigger pay-offs
can possibly better highlight the potential of our system. Moreover, we want to tackle
another important issue of the model selection problem, the feature selection, which
finds promising features from the set of extracted features. In [25] it has been shown
that using an appropriate representation for training is beneficial for every learner and
that particular learners show different preferences for the representation of features.
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