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MotivationMotivation
 Embedded Systems used as Real-Time Systems
 Worst-case execution time (WCET) is a key parameter

 Crucial for safety-critical systems
 Required for task scheduling
 Helps to design hardware platforms

 Estimated by static timing analyzers

Meeting Real Time Constraints
 Trial-and-error approaches
 Automatic WCET reduction by compilers

  Integration of timing analyzer into compiler framework
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Compiler Developers’ Struggle Compiler Developers’ Struggle 
 Development of compiler heuristics tedious

 Requires expertise and extensive trial-and-error tuning
 Complicated by advent of complex architectures

 Abstract models don’t exploit target features
 Optimizations performed in a sequence 

 Interference with possible conflicts

 Which choices do we have?
Use conservative assumptions missing optimization potential
Tune heuristic for a fixed optimization sequence
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Machine Learning Based Compiler Heuristics Machine Learning Based Compiler Heuristics 
 Finding relevant information in high dimensional space
 Help to understand and control complex systems
 ML approaches allow automatic heuristic generation

<static features>   heuristic parameters

Benefits
 Learning results enhance flexibility of compiler

 Automatic re-learning for new target / optimization sequence
 Reduce effort for compiler development
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Current Workflow for Heuristic Generation Current Workflow for Heuristic Generation 
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Problem Specification: Model Selection Problem Specification: Model Selection 
 Goal: Find induced model with best performance
 But

 Complex structure of learning algorithms
 Non-trivial impact on prediction => performance

 Prediction of performance of induced models infeasible
 Evaluate generated heuristics using cross-validation 

 Current approach: Trial-and-error
 Time-consuming, error-prone & benefits of further tuning?

 Few combinations of learner/parameters tested
Effort shifted from manual tuning to model selection
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Automatic Model Selection Automatic Model Selection 

Systematic evaluation of induced models by different 
learners and parameter settings
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Learning Algorithms Learning Algorithms 
 Decision Trees: Split training set into sub-trees

 Splitting criterion, depth of trees, min. # examples in leaf …
 Random Forests: Sets of decision trees  + majority vote

 # of trees, # randomly chosen features for node split …
 Linear SVM: Find hyperplane to separate examples

 Soft margin for misclassification
 SVM with RBF kernel: separation based on Gaussian dist.

 Soft margin for misclassification, Gaussian’s width
 k-Nearest Neighbor: based on nearest neighbors classes

 Number of considered neighbors
 Naïve Bayes: probabil. classifier based on Bayes’ theorem
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Performance Evaluation (1) Performance Evaluation (1) 
 Standard performance measurement: Accuracy

 Comparison of predicted and real class using
N-fold cross validation

 Goal for embedded RT systems: WCET minimization

Accuracy the right measure?
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Performance Evaluation (2) Performance Evaluation (2) 

 Accuracy not suitable performance measure

Example
 4 Optimization 

Decisions:

Scenario 1: 
 A, B, C correct

 -10
 -10
 -20
 50 => 10

 WCET increase
 Accuracy: 75%

Scenario 2: 
 C, D correct

  0
  0
 -20
 0 => -20

 WCET decrease
 Accuracy: 50%050D

0-20C
0-10B
0-10A

NOYES
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Performance Evaluation (3) Performance Evaluation (3) 
 Benchmark-wise cross-validation based on WCET

for all algorithm alg
   for all parameter settings set
      performance = 0
      for all benchmarks b in training set E {
         generateHeuristicMLB(alg,s, E \ b)
         WCETMLB = computeWCETMLB(b)
         performance += (WCETMLB / WCETref ) 
      }

      evaluation[alg][s] = performance / |E|   
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Parameter Optimization Parameter Optimization 
 Exhaustive search over all combinations of 

user-defined learner parameters not feasible

Our solution: Evolutionary search
 Genetic algorithm
 Represent each parameter combination as individual
 Performance (fitness) calculation based on WCET
 Reproduction via one-point crossover & mutation 
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Workflow of Parameter Optimization Workflow of Parameter Optimization 
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Loop Invariant Code Motion (LICM) Loop Invariant Code Motion (LICM) 
 Well-known ACET optimization
 Moves loop invariant computations outside the loop
 Can be applied at source code or assembly level

Negative Effects 
 Moved computations increase register pressure
 Lengthen other CFG paths (above zero-trip test, …)

Positive Effects
 Reduced execution frequencies of shifted invariants
 Positive effects on instruction cache
 Shortens variable live ranges       decreased reg. pressure
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Heuristics for LICMHeuristics for LICM
 Heuristics for LICM not trivial 

 register pressure dilemma …
 No heuristics in compiler literature
 LICM performed whenever possible

Automatic Generation of LICM Heuristics 
using Supervised Machine Learning
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 WCC *– WCET-aware C compiler for Infineon TC1796

Compiler FrameworkCompiler Framework

[*http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/]
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Experimental SetupExperimental Setup
 39 Benchmarks from DSPstone, MediaBench, UTDSP …
 3491 examples (LICM instructions)
 73 static features to characterize loop-invariant

instruction or its environment
 Structural features, LTA-related, loop-related, reg. pressure, …
 Large number of features to support generality of framework

Construction of Training Set
 Feature Extraction: for each instruction before LICM
 Label: Measure WCET before and after LICM (YES|NO)
 Training phase took 50 hours on 2.13 GHz 4-Core
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Evolutionary Parameter OptimizationEvolutionary Parameter Optimization
 Parameter optimization performed for all 6 learners
 Finds MLB heuristic with highest reduction of the WCET

 Performance evaluation (fitness) based on benchmark-
wise cross validation

 Highly optimized code (O3) w/o LICM used as reference
 Optimization time between 5h - 37h on 2.13 GHz 4-Core

Final State
 Best model integrated into compiler framework
 Before LICM, prediction by ML tool
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Results – Parameter Optimization (1)Results – Parameter Optimization (1)

 #parameter combinations too large for exhaustive search
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Results – Parameter Optimization (2)Results – Parameter Optimization (2)

 WCET reduction varies between 1.76% and 4.64%
 Compared to standard ACET LICM achieving a WCET 

reduction of 0.56%, significant improvement of 8.3x 
 Parameters have strong impact on learner performance
 No correlation between WCET reduction and accuracy
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Progress of Evolutionary Parameter OptimizationProgress of Evolutionary Parameter Optimization

 Convergence plot for best learner (SVM with RBF kernel)
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Results – Relative WCET for Best ModelResults – Relative WCET for Best Model

 100% corresponds to –O3 without LICM
 Average: Standard 0.56% ; WCET-driven LICM 4.64%
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Conclusions & Future WorkConclusions & Future Work
 Central issue in MLB heuristic generation: 

Model Selection
 Choice of learner and its parameters has strong impact 

on performance of induced model (heuristic)
 Exhaustive search not feasible => Evolutionary search
 Case study on WCET-driven LICM
 Novel optimization outperforms std. LICM by 8.3x

Future Work
 Evaluation of further learning algorithms & optimizations
 Feature selection
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Thank you for your Thank you for your 
attention.attention.


