

Computer Science 12 Embedded Systems Group

Automatic Selection of Machine Learning Models for WCET-aware Compiler Heuristic Generation

Paul Lokuciejewski | Marco Stolpe | Katharina Morik | Peter Marwedel

TU Dortmund University Department of Computer Science 12, 8 44221 Dortmund Germany

Introduction

- Motivation for WCET-aware Compiler Optimizations
- Compilers and Machine Learning
- Current Workflow for MLB Heuristic Generation
- Automatic Model Selection
 - Learning Algorithms
 - Performance Evaluation
 - Parameter Optimization
- Case Study: Loop Invariant Code Motion
- Experimental Environment & Results
- Conclusions & Future Work

Motivation

- Embedded Systems used as Real-Time Systems
- Worst-case execution time (WCET) is a key parameter
 - Crucial for safety-critical systems
 - Required for task scheduling
 - Helps to design hardware platforms
- Estimated by static timing analyzers

Meeting Real Time Constraints

- ⁽²⁾ Trial-and-error approaches
- Output is a second s
 - Integration of timing analyzer into compiler framework

Compiler Developers' Struggle

- Development of compiler heuristics tedious
 - Requires expertise and extensive trial-and-error tuning
 - Complicated by advent of complex architectures
 - Abstract models don't exploit target features
 - Optimizations performed in a sequence
 - Interference with possible conflicts
- Which choices do we have?
 - Over the second seco
 - ⁽²⁾ Tune heuristic for a fixed optimization sequence

Machine Learning Based Compiler Heuristics

- Finding relevant information in high dimensional space
- Help to understand and control complex systems

Benefits

- Learning results enhance flexibility of compiler
 - Automatic re-learning for new target / optimization sequence
- Reduce effort for compiler development

- Introduction
 - Motivation for WCET-aware Compiler Optimizations
 - Compilers and Machine Learning
- Current Workflow for MLB Heuristic Generation
- Automatic Model Selection
 - Learning Algorithms
 - Performance Evaluation
 - Parameter Optimization
- Case Study: Loop Invariant Code Motion
- Experimental Environment & Results
- Conclusions & Future Work

Current Workflow for Heuristic Generation

Problem Specification: Model Selection

- Goal: Find induced model with best performance
- But
 - Complex structure of learning algorithms
 - Non-trivial impact on prediction => performance
- Prediction of performance of induced models infeasible
- Evaluate generated heuristics using cross-validation
- ⁽²⁾ Current approach: Trial-and-error
 - Time-consuming, error-prone & benefits of further tuning?
- Few combinations of learner/parameters tested

Effort shifted from manual tuning to model selection

- Introduction
 - Motivation for WCET-aware Compiler Optimizations
 - Compilers and Machine Learning
- Current Workflow for MLB Heuristic Generation
- Automatic Model Selection
 - Learning Algorithms
 - Performance Evaluation
 - Parameter Optimization
- Case Study: Loop Invariant Code Motion
- Experimental Environment & Results
- Conclusions & Future Work

Computer Science 12 Embedded Systems Group

Automatic Model Selection

Systematic evaluation of induced models by different learners and parameter settings

Learning Algorithms

Decision Trees: Split training set into sub-trees

Splitting criterion, depth of trees, min. # examples in leaf ...

Random Forests: Sets of decision trees + majority vote

of trees, # randomly chosen features for node split ...

Linear SVM: Find hyperplane to separate examples

Soft margin for misclassification

SVM with RBF kernel: separation based on Gaussian dist.

Soft margin for misclassification, Gaussian's width

k-Nearest Neighbor: based on nearest neighbors classes

Number of considered neighbors

Naïve Bayes: probabil. classifier based on Bayes' theorem

Performance Evaluation (1)

- Standard performance measurement: Accuracy
 - Comparison of predicted and real class using N-fold cross validation
- Goal for embedded RT systems: WCET minimization

Accuracy the right measure?

Performance Evaluation (2)

Example

 4 Optimization Decisions:

	YES	NO
Α	-10	0
В	-10	0
С	-20	0
D	50	0

Scenario 1:				
-	A, B, C correct			
	-10			
-10				
	-20			
■ 50 => 10				
-	WCET increase			
	Accuracy: 75%			

Scenario 2:

- C, D correct
 - 0
 - 0
 - **-20**
 - 0 => -20
- WCET decrease
- Accuracy: 50%

Accuracy not suitable performance measure

Performance Evaluation (3)

Benchmark-wise cross-validation based on WCET

```
for all algorithm alg
  for all parameter settings set
    performance = 0
    for all benchmarks b in training set E {
      generateHeuristic<sub>MIB</sub>(alg,s, E \setminus b)
      WCET_{MIB} = computeWCET_{MIB}(b)
      performance += (WCET<sub>MIB</sub> / WCET<sub>ref</sub>)
```

```
evaluation[alg][s] = performance / |E|
```


Parameter Optimization

 Exhaustive search over all combinations of user-defined learner parameters not feasible

Our solution: Evolutionary search

- Genetic algorithm
- Represent each parameter combination as individual
- Performance (fitness) calculation based on WCET
- Reproduction via one-point crossover & mutation

Workflow of Parameter Optimization

© P. Lokuciejewski | Jan 29, 2010

- Introduction
 - Motivation for WCET-aware Compiler Optimizations
 - Compilers and Machine Learning
- Current Workflow for MLB Heuristic Generation
- Automatic Model Selection
 - Learning Algorithms
 - Performance Evaluation
 - Parameter Optimization
- Case Study: Loop Invariant Code Motion
- Experimental Environment & Results
- Conclusions & Future Work

Loop Invariant Code Motion (LICM)

- Well-known ACET optimization
- Moves loop invariant computations outside the loop
- Can be applied at source code or <u>assembly level</u>

Positive Effects

- Reduced execution frequencies of shifted invariants
- Positive effects on instruction cache
- Shortens variable live ranges
 → decreased reg. pressure
 Negative Effects
- Moved computations increase register pressure
- Lengthen other CFG paths (above zero-trip test, ...)

Heuristics for LICM

Heuristics for LICM not trivial

- register pressure dilemma ...
- No heuristics in compiler literature
- LICM performed whenever possible

Automatic Generation of LICM Heuristics using Supervised Machine Learning

- Introduction
 - Motivation for WCET-aware Compiler Optimizations
 - Compilers and Machine Learning
- Current Workflow for MLB Heuristic Generation
- Automatic Model Selection
 - Learning Algorithms
 - Performance Evaluation
 - Parameter Optimization
- Case Study: Loop Invariant Code Motion
- Experimental Environment & Results
- Conclusions & Future Work

Compiler Framework

WCC *– WCET-aware C compiler for Infineon TC1796

[*http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/]

Experimental Setup

- 39 Benchmarks from DSPstone, MediaBench, UTDSP ...
- 3491 examples (LICM instructions)
- 73 static features to characterize loop-invariant instruction or its environment
 - Structural features, LTA-related, loop-related, reg. pressure, ...
 - Large number of features to support generality of framework
- **Construction of Training Set**
- Feature Extraction: for each instruction before LICM
- Label: Measure WCET before and after LICM (YES|NO)
- Training phase took 50 hours on 2.13 GHz 4-Core

Evolutionary Parameter Optimization

- Parameter optimization performed for all 6 learners
- Finds MLB heuristic with highest reduction of the WCET
- Performance evaluation (fitness) based on benchmarkwise cross validation
- Highly optimized code (O3) w/o LICM used as reference
- Optimization time between 5h 37h on 2.13 GHz 4-Core

Final State

- Best model integrated into compiler framework
- Before LICM, prediction by ML tool

Results – Parameter Optimization (1)

Parameter	Range	Best	Parameter	Range	Best
Decision Trees			SVM with RBF kernel		
max. depth	[1;20]	16	С	[0;10,000]	2405.15
min. split size	[4;100]	19	γ	[0;74]	30.08
min. leaf size	[2;100]	31		Linear SVM	
min. gain	[0;0.03]	0.014	С	[0;10,000]	616.11
prepr. altern.	[3;10]	4		kNN	
confidence	[0.1;0.5]	0.476	k	[3;100]	11
Random Forests			Naive Bayes		
no of trees	[1;100]	7	no configurat	ole parameters	
features	[1;73]	39			

#parameter combinations too large for exhaustive search

Results – Parameter Optimization (2)

Learner	Best	Worst	Average	Accuracy
Decision Tree	96.17%	99.78%	97.42%	63.16%
Random Forests	96.60%	98.96%	97.69%	60.43%
Linear SVM	98.24%	98.62%	98.34%	53.50%
SVM with RBF kernel	95.36%	98.80%	97.12%	57.78%
kNN	97.32%	98.94%	97.98%	67.48%
Naive Bayes	98.17%	98.17%	98.17%	54.31%

- WCET reduction varies between 1.76% and 4.64%
- Compared to standard ACET LICM achieving a WCET reduction of 0.56%, significant improvement of 8.3x
- Parameters have strong impact on learner performance
- No correlation between WCET reduction and accuracy

Progress of Evolutionary Parameter Optimization

Convergence plot for best learner (SVM with RBF kernel)

Results – Relative WCET for Best Model

- 100% corresponds to –O3 without LICM
- Average: Standard 0.56% ; WCET-driven LICM 4.64%

© P. Lokuciejewski | Jan 29, 2010

Introduction

- Motivation for WCET-aware Compiler Optimizations
- Compilers and Machine Learning
- Traditional Function Inlining
- WCET-driven Function Inlining
 - Supervised Learning (Random Forests)
 - Feature / Label Extraction
 - Heuristic Generation
- Experimental Environment & Results

Conclusions & Future Work

Conclusions & Future Work

- Central issue in MLB heuristic generation: Model Selection
- Choice of learner and its parameters has strong impact on performance of induced model (heuristic)
- Exhaustive search not feasible => Evolutionary search
- Case study on WCET-driven LICM
- Novel optimization outperforms std. LICM by 8.3x

Future Work

- Evaluation of further learning algorithms & optimizations
- Feature selection

Thank you for your attention.

© P. Lokuciejewski | Jan 29, 2010

SMART'10

Slide 30