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MotivationMotivation
 Embedded Systems used as Real-Time Systems
 Worst-case execution time (WCET) is a key parameter

 Crucial for safety-critical systems
 Required for task scheduling
 Helps to design hardware platforms

 Estimated by static timing analyzers

Meeting Real Time Constraints
 Trial-and-error approaches
 Automatic WCET reduction by compilers

  Integration of timing analyzer into compiler framework
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Compiler Developers’ Struggle Compiler Developers’ Struggle 
 Development of compiler heuristics tedious

 Requires expertise and extensive trial-and-error tuning
 Complicated by advent of complex architectures

 Abstract models don’t exploit target features
 Optimizations performed in a sequence 

 Interference with possible conflicts

 Which choices do we have?
Use conservative assumptions missing optimization potential
Tune heuristic for a fixed optimization sequence
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Machine Learning Based Compiler Heuristics Machine Learning Based Compiler Heuristics 
 Finding relevant information in high dimensional space
 Help to understand and control complex systems
 ML approaches allow automatic heuristic generation

<static features>   heuristic parameters

Benefits
 Learning results enhance flexibility of compiler

 Automatic re-learning for new target / optimization sequence
 Reduce effort for compiler development
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Current Workflow for Heuristic Generation Current Workflow for Heuristic Generation 
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Problem Specification: Model Selection Problem Specification: Model Selection 
 Goal: Find induced model with best performance
 But

 Complex structure of learning algorithms
 Non-trivial impact on prediction => performance

 Prediction of performance of induced models infeasible
 Evaluate generated heuristics using cross-validation 

 Current approach: Trial-and-error
 Time-consuming, error-prone & benefits of further tuning?

 Few combinations of learner/parameters tested
Effort shifted from manual tuning to model selection
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Automatic Model Selection Automatic Model Selection 

Systematic evaluation of induced models by different 
learners and parameter settings
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Learning Algorithms Learning Algorithms 
 Decision Trees: Split training set into sub-trees

 Splitting criterion, depth of trees, min. # examples in leaf …
 Random Forests: Sets of decision trees  + majority vote

 # of trees, # randomly chosen features for node split …
 Linear SVM: Find hyperplane to separate examples

 Soft margin for misclassification
 SVM with RBF kernel: separation based on Gaussian dist.

 Soft margin for misclassification, Gaussian’s width
 k-Nearest Neighbor: based on nearest neighbors classes

 Number of considered neighbors
 Naïve Bayes: probabil. classifier based on Bayes’ theorem
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Performance Evaluation (1) Performance Evaluation (1) 
 Standard performance measurement: Accuracy

 Comparison of predicted and real class using
N-fold cross validation

 Goal for embedded RT systems: WCET minimization

Accuracy the right measure?
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Performance Evaluation (2) Performance Evaluation (2) 

 Accuracy not suitable performance measure

Example
 4 Optimization 

Decisions:

Scenario 1: 
 A, B, C correct

 -10
 -10
 -20
 50 => 10

 WCET increase
 Accuracy: 75%

Scenario 2: 
 C, D correct

  0
  0
 -20
 0 => -20

 WCET decrease
 Accuracy: 50%050D

0-20C
0-10B
0-10A

NOYES
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Performance Evaluation (3) Performance Evaluation (3) 
 Benchmark-wise cross-validation based on WCET

for all algorithm alg
   for all parameter settings set
      performance = 0
      for all benchmarks b in training set E {
         generateHeuristicMLB(alg,s, E \ b)
         WCETMLB = computeWCETMLB(b)
         performance += (WCETMLB / WCETref ) 
      }

      evaluation[alg][s] = performance / |E|   
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Parameter Optimization Parameter Optimization 
 Exhaustive search over all combinations of 

user-defined learner parameters not feasible

Our solution: Evolutionary search
 Genetic algorithm
 Represent each parameter combination as individual
 Performance (fitness) calculation based on WCET
 Reproduction via one-point crossover & mutation 
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Workflow of Parameter Optimization Workflow of Parameter Optimization 
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Loop Invariant Code Motion (LICM) Loop Invariant Code Motion (LICM) 
 Well-known ACET optimization
 Moves loop invariant computations outside the loop
 Can be applied at source code or assembly level

Negative Effects 
 Moved computations increase register pressure
 Lengthen other CFG paths (above zero-trip test, …)

Positive Effects
 Reduced execution frequencies of shifted invariants
 Positive effects on instruction cache
 Shortens variable live ranges       decreased reg. pressure
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Heuristics for LICMHeuristics for LICM
 Heuristics for LICM not trivial 

 register pressure dilemma …
 No heuristics in compiler literature
 LICM performed whenever possible

Automatic Generation of LICM Heuristics 
using Supervised Machine Learning
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 WCC *– WCET-aware C compiler for Infineon TC1796

Compiler FrameworkCompiler Framework

[*http://ls12-www.cs.tu-dortmund.de/research/activities/wcc/]
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Experimental SetupExperimental Setup
 39 Benchmarks from DSPstone, MediaBench, UTDSP …
 3491 examples (LICM instructions)
 73 static features to characterize loop-invariant

instruction or its environment
 Structural features, LTA-related, loop-related, reg. pressure, …
 Large number of features to support generality of framework

Construction of Training Set
 Feature Extraction: for each instruction before LICM
 Label: Measure WCET before and after LICM (YES|NO)
 Training phase took 50 hours on 2.13 GHz 4-Core
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Evolutionary Parameter OptimizationEvolutionary Parameter Optimization
 Parameter optimization performed for all 6 learners
 Finds MLB heuristic with highest reduction of the WCET

 Performance evaluation (fitness) based on benchmark-
wise cross validation

 Highly optimized code (O3) w/o LICM used as reference
 Optimization time between 5h - 37h on 2.13 GHz 4-Core

Final State
 Best model integrated into compiler framework
 Before LICM, prediction by ML tool
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Results – Parameter Optimization (1)Results – Parameter Optimization (1)

 #parameter combinations too large for exhaustive search
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Results – Parameter Optimization (2)Results – Parameter Optimization (2)

 WCET reduction varies between 1.76% and 4.64%
 Compared to standard ACET LICM achieving a WCET 

reduction of 0.56%, significant improvement of 8.3x 
 Parameters have strong impact on learner performance
 No correlation between WCET reduction and accuracy
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Progress of Evolutionary Parameter OptimizationProgress of Evolutionary Parameter Optimization

 Convergence plot for best learner (SVM with RBF kernel)
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Results – Relative WCET for Best ModelResults – Relative WCET for Best Model

 100% corresponds to –O3 without LICM
 Average: Standard 0.56% ; WCET-driven LICM 4.64%
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Conclusions & Future WorkConclusions & Future Work
 Central issue in MLB heuristic generation: 

Model Selection
 Choice of learner and its parameters has strong impact 

on performance of induced model (heuristic)
 Exhaustive search not feasible => Evolutionary search
 Case study on WCET-driven LICM
 Novel optimization outperforms std. LICM by 8.3x

Future Work
 Evaluation of further learning algorithms & optimizations
 Feature selection
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Thank you for your Thank you for your 
attention.attention.


