
Application Characterization:
A comprehensive way of analyzing and understandingA comprehensive way of analyzing and understanding

interaction between hardware and software

(applications/compiler/runtime): performance and energy

Jean Christophe Beyler, Intel ECR

BOF Submitted by:

Marie-Christine Sawley, Intel ECR & Gregori Fursin, INRIA

ECR Team
ECR team includes over 25 high level

researchers

ECR Team is part of research labs in

Europe and North America

ECR is a member of the Intel EMEA

2

ECR is a member of the Intel EMEA

HPC Exascale labs together with

ExaScience lab and ExaCluster lab

Part of DSG-DCSG

2 main Streams of Research

Software for application characterization and performance

optimization
Extract fine grain information about the interaction of whole software

with the underlying architecture

Application co-design

3

Application co-design

Leveraging from the low level information and the capacity of new

architectures for enabling progress in science using computational

power

7. Tying it all together: CTI

2. Small Representative Codelets

4. Underlying Architecture
Codelet

Finder
Small

Codelets
MicroBenchmarks MDL

1. Full

Application

Outline

3. Coarse Grain Tools

MAQAO, DECAN

6. Capacity and Prediction Models

Codelet Profiles

Optimization

Opportunities

5. Handling all the Data

ASK
Machine

Learning

4

Cutting the Application Up

• First step: finding the hot spots

• Considering full applications is difficult

Small

Codelet

s

1. Full

Application

Codelet

Finder

Considering full applications is difficult

• Study the hotspots

• Automatic solution:

• Using CAPS Enterprise’s Codelet Finder tool

• Second step: work on the codelets separately

5

Codelet Finder

• Key features

• Implemented by CAPS Enterprise

• Handles C or Fortran codes

• Automatically detects hotspots and extracts loops into:

• Kernel, wrapper, data input

• Data input is retrieved by a core dump before the kernel

• Future work

• Allow users to modify input data easily

• Add more supported constructs

6

2. Small Representative Codelets

Outline

Small

Codelets

7

3. Coarse Grain Tools

MAQAO, DECAN

Codelet Profiles

Optimization

Opportunities

Tools to Quantify

• Logical next step

• Measure performance with profiling tools such as MAQAO

• Provides important information

• What can be optimized?

• What is obtainable?

8

Loop Structure and

Assembly Code

Interactive Control

Flow Graph

(Exagraph)

• Disassemble or

reassemble SSE and

AVX binaries

• Performance model

for Core2, Nehalem,

and Sandy Bridge

• Low overhead • Low overhead

profiler

• < 100 cycles per

probe

• OMP compliant

9

• Performance analysis

• No pragma or source code alteration

• Vectorization ratio

• Detailed pipeline model:

• Dispatch, decoder, LSD, per port pressure

• Memory traffic• Memory traffic

• Aggregate memory instructions per group

• Unrolling factor

• Static performance prediction

• 'What if' the code is fully vectorized

• 'What if' the data is stored in L1

10

• Modular Architecture

• Demo of TAU using binary capacities of MAQAO at SC11

11

QMC == CHEM with MAQAO
!DIR$ VECTOR ALIGNED
do j=1,LDC
C1(j,i)=C1(j,i)+(A(j,k_vec(1))*d11 &

+ A(j,k_vec(2))*d21 &
+ A(j,k_vec(3))*d31 &
+ A(j,k_vec(4))*d41)&

C2(j,i)=C2(j,i)+(A(j,k_vec(1))*d12 &
+ A(j,k_vec(2))*d22 &
+ A(j,k_vec(3))*d32 &
+ A(j,k_vec(4))*d42)&

enddo MAQAO static analysis before (top) and after (bottom) optimizationenddo

• Dealing with the two hottest loops in the application

• Dense x sparse matrix multiply

• FLOP/cycle not optimal:

• 12.8 but should be 16

• AVX, 32 bits elements, perfect ADD/MUL balance

• Replacing LDC with its value ”hard coded” allows the compiler to factor for the two matrices
C1 and C2

MAQAO static analysis before (top) and after (bottom) optimization

12

Tools to Explain

• MAQAO and similar tools provide information

• Profiler detects hot spot

• MAQAO goes beyond and evaluates the gap

• Current and optimal static performance

• It remains the discrepancy is difficult to understand• It remains the discrepancy is difficult to understand

• DECAN is an exploratory tool

13

DECAN

• DECAN’s concept is simple

• Measure the original binary

• Patch and replace the selected instructions group in
the original binary

14

the original binary

• New binary is generated for each patch

• Measure new binaries

• Measurements are represented in a CSV file
• Analyze and compare

DECAN

• Codelet Decomposition

• MISTREAM

• All vector arithmetic instructions are deleted

• FPSTREAM

• All vector loads and store instructions are deleted

• NOFPNOMISTREAM• NOFPNOMISTREAM

• All vector arithmetic, load, and store instructions are deleted

15

Codelet Contains:
Memory Instruction

Arithmetic Instruction

Branch Instruction

Version without

Memory Instruction

Version without

Arithmetic Instruction

Version with Only

Branch Instruction

Results Can

Be Analyzed

Separately

DECAN

16

MAQAO + DECAN Provides

• Speed-up by a factor of 4

• Up to 37% of the peak performance on Sandy

Bridge

• Vectorization ratio crucial on Sandy Bridge• Vectorization ratio crucial on Sandy Bridge

• Value profiling

17

Outline

2. Small Representative Codelets

4. Underlying Architecture

MicroBenchmarks MDL

18

3. Coarse Grain Tools

MAQAO, DECAN

Codelet Profiles

Optimization

Opportunities

Underlying Architecture

� Understanding the target architecture

� Gives insight on potential bottlenecks

� Provides solutions to optimize a code

� How is it done?

� Emulators or simulators are slow if even available

� Microbenchmarking considers the hardware as a black

box

19

MicroTools

MICROBENCHMARKS

Template

XML Format

MicroCreator

Source-to-Source

Compiler

Generated

Assembly

or C Code

MicroLauncher

20

MicroLauncher

Generic

Multi-Process

Benchmark Launcher

Performance

Information

Energy

Information

MicroTools Usage

MicroTools enables an exhaustive exploration

of architecture performance.

1) Two real case-studies

� NOPS impact on dispatcher

21

NOPS impact on dispatcher

� Memory + arithmetic interaction

2) How to deal with all the data collected?

� Automated reports analysis

NOPS Experiment

• Goal: Evaluate the dispatch unit

• Loop body parameters

• The NOP instruction size:

• Varies from 1 to 9 bytes• Varies from 1 to 9 bytes

• The number of NOP instructions in the loop body:

• Varies from 4 to 32

• Each loop body tested consists of the same NOP

instructions repeated from 4 to 32 times

22

NOPS Experiment

23

NOPS Experiment

24

NOPS Experiment

� Dispatcher capacity is around 3 nops/cycle

� For 1-byte and 2-byte nops

� Dispatch behavior is linear

25

� Dispatch behavior is linear

� For large size nops

� Dispatch rate falls down to 0.96 instructions

per cycle

Outline

2. Small Representative Codelets

4. Underlying Architecture

MicroBenchmarks MDL

26

3. Coarse Grain Tools

MAQAO, DECAN

Codelet Profiles

Optimization

Opportunities

5. Handling all the Data

ASK
Machine

Learning

HANDLING THE DATA

� MicroCreator philosophy:

� Exhaustively search around a given program
specification

� Sometimes, we need to reduce the space (ASK)

27

� Sometimes, we need to reduce the space (ASK)

� A lot of data produced

� We need automatic data handling tools

− Validate the stability of the results

− Identify unexpected situations to help the engineer.

ASK (Adaptive Sampling Kit)

� ASK is a toolkit providing state of the art sampling strategies

� Modular and Extensible Pipeline:

� Combine different static and dynamic strategies

� Easy to add new custom sampling strategy

� Easy integration with benchmarking tools

ASK

User defines the

domain space with

an easy plugin

ASK contains

multiple sampling

point selections

ASK selects points to

test until the studied

variance is

“acceptable” by the

userselections

ASK provides the approximate

domain space analysis

ASK: An example

� Search the
domain space

� Find high
variance regionsvariance regions

� Draw new points
from high-
variance regions

“Flat” regions are less interesting to explore.

Order Influence Report

• Decomposes results per number of stores and
loads

• Quickly identify configurations where
performance depends on the order of performance depends on the order of
instructions

30

Outline

2. Small Representative Codelets

31

6. Capacity and Prediction Models

5. Handling all the Data

ASK
Machine

Learning

Capacity Model

32

Capacity Model

• Capacity Model and MDL

• Provide prediction and modelization of program

performance

• However, alone the tools are less valuable• However, alone the tools are less valuable

• A need to centralize the data and analysis:

CTI : Codelet Tuning Instrastructure

33

Outline
7. Tying it all together: CTI

2. Small Representative Codelets

4. Underlying Architecture
Codelet

Finder
Small

Codelets
MicroBenchmarks MDL

1. Full

Application

34

3. Coarse Grain Tools

MAQAO, DECAN

6. Capacity and Prediction Models

Codelet Profiles

Optimization

Opportunities

5. Handling all the Data

ASK
Machine

Learning

Codelet Tuning Infastructure (CTI)

Legend

• A single place to store a huge amount of data

• File manager

• File sharing, updating, processing, viewing

• Codelet manager

• CSV automatic file insertion

To Be Done

Done

35

• CSV automatic file insertion

• Query the data

• Automate experiments

• Tools integrator
CTI

Codelet Finder

MicroTools

DECAN MAQAO

Files

Experiment Data

CTI Codelet Manager

Codelet Manager

A
sy

nc
hr

on
ou

s

Front end

Application

Codelets
Daemon

Registering
Codelets

36

Etc…M1 M2

Codelet
Finder

User

C.T.I.
Codelets

• Launching the « create » process

CTI Codelet Manager

37

• Checking the codelets list

CTI Codelet Manager

38

• Checking the codelet files

CTI Codelet Manager

39

Codelet Binary

Cluster

CTI EntryCTI

CTI MAQAO Integration

CSVMAQAOCodelet Binary

1) Codelet to Binary

The codelet is sent to the
cluster for complitation

CTI EntryCTI

3) CSV to CTI entry

CSV file is loaded into

CTI repository and saved

in an entry

40

CSV
FileMAQAO

2) Binary to CSV

Binary is analyzed using
MAQAO and a CSV

file with results is

produced

Loop 1
Analysis

Loop 2
Analysis

+ Number of instructions
+ Number of micro operations
+ Size (in bytes) of the loop
+ Number of XMM or YMM used registers
+ Does the loop fit in cache?
+ Number of bytes loaded and stored
+ Number of micro-operations per iteration for each

execution port
+ Number of cycle per iteration for each execution port

CTI MAQAO Integration

CSV
File

Analysis

Loop n
Analysis

+ Number of cycle per iteration for each execution port
+ Vectorization ratios for:

Loads
Store
Add/Sub
Mul
Others

+ Predictions if data fit in L1 cache:
Number of cycles

FLOP/cycle
Bytes loaded/cycle

Bytes stored/cycle
Number of cycle if fully vectorized

41

Overall Conclusions

• Studying a large application is difficult

• Dividing the application into codelets

• Using tools such as MAQAO and DECAN help

understand the codelet’s performance and behavior

• Understanding the underlying architecture with • Understanding the underlying architecture with

MicroTools and the MDL help detect hardware

bottlenecks

• Analyzing all the data is only possible with automatic

tools and infrastructures such as CTI

42

Acknowledgements

• Pablo Oliviera, UVSQ

• José Noudohouenou, UVSQ

• Franck Talbart, UVSQ

• William Jalby, CTO, UVSQ

• Jean-Thomas Acquaviva, Lead of the

Performance Tools

• Bettina Krammer, Head of Software Tools,

UVSQ

• Marie-Christine Sawley, Lab Director, Intel

43

ECR Contacts

• Address
UVSQ, 45 Av. des Etats-Unis, Buffon building, 5th floor

78 000 Versailles, France

• Web site: www.exascale-computing.eu

• Team
William Jalby, CT , william.jalby@uvsq.frWilliam Jalby, CT , william.jalby@uvsq.fr

Jean Christophe Beyler, Lead of Application Characterization,

jean.christophe.beyler@intel.com

Marie-Christine Sawley, Co-design, marie-christine.sawley@intel.com

Bettina Krammer, Tools, bettina.krammer@uvsq.fr

• Collaboration partners

44

Thank you

45

DECAN + MICROTOOLS

46

DECAN + MICROTOOLS

47

DECAN + MICROTOOLS

48

DECAN + MICROTOOLS

49

Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency

50

Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency

MOVSDMOVSD

2 LOADS 2 LOADS + 1 STORE

51

Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency

MOVSD MOVAPSMOVSD MOVAPS

2 LOADS 2 LOADS + 1 STORE 2 LOADS 2 LOADS + 1 STORE

52

Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load
configurations

53

Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load
configurations

MOVSD

2 LOADS 2 LOADS + 1 STORE

54

Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load
configurations

MOVSD MOVAPS

2 LOADS 2 LOADS + 1 STORE 2 LOADS 2 LOADS + 1 STORE

55

Energy

56

Results

Used a dual-Nehalem, 6-cores each, nine

possible frequencies

Used a Sandy Bridge Quad-core, sixteen

frequenciesfrequencies

Compared with O3 execution, the Linux

governors and static frequencies

57

300000

400000

500000

600000

700000

00:21:36

00:28:48

00:36:00

00:43:12

00:50:24

00:57:36

E
n

e
rg

y
 (Jo

u
le

s)
T

im
e

 S
p

e
n

t
(h

h
:m

m
:s

s)

Gromacs

Nehalem (Energy)

REST
Performance

REST
Energy

0

100000

200000

00:00:00

00:07:12

00:14:24

00:21:36

E
n

e
rg

y
 (Jo

u
le

s)

Frequencies (KHz)

T
im

e
 S

p
e

n
t

(

Time Spent (hh:min:ss) Energy (Joules)

58

1300000

1400000

1500000

1600000

1700000

1800000

01:41:57

01:42:14

01:42:32

01:42:49

01:43:06

01:43:24

E
n

e
rg

y
 (Jo

u
le

s)
T

im
e

 S
p

e
n

t
(h

h
:m

m
:s

s)

Libquantum

Nehalem Energy

REST

Performance

1000000

1100000

1200000

1300000

01:40:48

01:41:05

01:41:23

01:41:40

Jo
u

le
s)

Frequencies (KHz)

T
im

e
 S

p
e

n
t

(

Time Spent (hh:min:sec) Energy (J)

REST
Energy

59

RTM on Nehalem

410000

420000

430000

440000

450000

4,30E+012

4,50E+012

4,70E+012

T
im

e
 (

C
y

cl
e

s)

RTM Power and Performance

Cycles

60

350000

360000

370000

380000

390000

400000

onDemand 2661000 2660000 2527000 2394000 2261000 2128000 1995000 1862000 1729000 1596000

3,50E+012

3,70E+012

3,90E+012

4,10E+012

T
im

e
 (

C
y

cl
e

s)

Cycles

Energy (Ws)

REST

Performance

REST
Energy Only 2%

difference!

Ratio Turboboost on REST

1,15

1,2

1,25

1,3

1,35

1,4

Energy

Turboboost (J)

Rest (J)

0,9

0,95

1

1,05

1,1

1,15

454.calculix 445.gobmk 435.gromacs 470.lbm 462.libquantum 444.namd 453.povray

Energy

Performance

Turboboost (s)

Rest (s)

Rest =

Turboboost

61

What about Sandy bridge?

80000

100000

120000

140000

160000

180000

00:52:08

00:52:25

00:52:42

00:53:00

00:53:17

E
n

e
rg

y
 h

h
:m

m
:s

s)

Libquantum

Sandy Bridge (Energy)

62

0

20000

40000

60000

80000

00:50:59

00:51:16

00:51:33

00:51:50

E
n

e
rg

y
 (Jo

u
le

s)

Frequencies (KHz)

T
im

e
 S

p
e

n
t

(h
h

:m
m

:s
s

Time Spent (hh:mm:ss) Energy (J)

What about Watts?

35

40

45

50

55

60

P
o

w
e

r
(W

a
tt

)

Watt Usage on Sandy Bridge SPEC2006

libquantum

gromacs

bzip2

calculix

lbm

63

15

20

25

30

35

P
o

w
e

r
(W

a
tt

Frequencies (KHz)

perlbench

milc

gobmk

h264ref

Sandy Bridge’s Hardware counters 1/2

100

120

140

160

00:14:24

00:17:17

00:20:10

00:23:02

P
o

w
e

r (W
a

tt)

h
h

:m
m

:s
s)

QMC=Chem

Sandy Bridge (Power)

64

0

20

40

60

80

00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

P
o

w
e

r (W
a

tt)

Frequencies (KHz)

T
im

e
 S

p
e

n
t

(h
h

:m
m

:s
s

Time Spent (hh:mm:ss) Energy Core (W) Energy Total (W)

Sandy Bridge’s Hardware counters 2/2

67000

77000

87000

97000

00:11:31

00:14:24

00:17:17

00:20:10

00:23:02

E
n

e
rg

y
 (

T
im

e
 S

p
e

n
t

(h
h

:m
m

:s
s)

QMC=Chem

Sandy Bridge (Energy)

65

27000

37000

47000

57000

00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

E
n

e
rg

y
 (Jo

u
le

s)
T

im
e

 S
p

e
n

t
(h

h
:m

m
:s

s)

Frequencies (KHz)

Time Spent (hh:mm:ss) Energy Core (J) Energy Total (J)

in
 e

a
ch

 f
u

n
ct

io
n

C
o

u
n

te
r’

UpDownbench profiled with Eprof

(Hardware counter from PAPI)
S

a
m

p
le

s
in

 e
a

ch

C
o

u
n

te
r’

tick
s

Time (ms)

66

