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ECR  Team
ECR team includes over 25 high level 

researchers

ECR Team is part of research labs in 

Europe and North America

ECR is a member of the Intel EMEA 
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ECR is a member of the Intel EMEA 

HPC Exascale labs together with 

ExaScience lab and ExaCluster lab

Part of DSG-DCSG



2 main Streams of Research

Software for application characterization and performance 

optimization
Extract  fine grain information about  the interaction of whole software 

with the underlying architecture

Application co-design
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Application co-design

Leveraging from the low level information and the capacity of  new 

architectures for enabling progress in science using computational 

power
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Cutting the Application Up

• First step: finding the hot spots

• Considering full applications is difficult

Small 

Codelet

s

1. Full 

Application

Codelet 

Finder

Considering full applications is difficult

• Study the hotspots

• Automatic solution:

• Using CAPS Enterprise’s Codelet Finder tool

• Second step: work on the codelets separately
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Codelet Finder

• Key features

• Implemented by CAPS Enterprise

• Handles C or Fortran codes

• Automatically detects hotspots and extracts loops into: 

• Kernel, wrapper, data input

• Data input is retrieved by a core dump before the kernel

• Future work

• Allow users to modify input data easily

• Add more supported constructs
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2. Small Representative Codelets

Outline

Small 

Codelets
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3. Coarse Grain Tools

MAQAO, DECAN

Codelet Profiles

Optimization 

Opportunities



Tools to Quantify

• Logical next step

• Measure performance with profiling tools such as MAQAO

• Provides important information

• What can be optimized?

• What is obtainable?
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Loop Structure and 

Assembly Code

Interactive Control 

Flow Graph 

(Exagraph)



• Disassemble or 

reassemble SSE and 

AVX binaries

• Performance model 

for Core2, Nehalem, 

and Sandy Bridge

• Low overhead • Low overhead 

profiler

• < 100 cycles per 

probe

• OMP compliant
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• Performance analysis

• No pragma or source code alteration 

• Vectorization ratio

• Detailed pipeline model: 

• Dispatch, decoder, LSD, per port pressure

• Memory traffic• Memory traffic

• Aggregate memory instructions per group 

• Unrolling factor

• Static performance prediction

• 'What if' the code is fully vectorized

• 'What if' the data is stored in L1
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• Modular Architecture

• Demo of TAU using binary capacities of MAQAO at SC11
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QMC == CHEM with MAQAO
!DIR$ VECTOR ALIGNED
do j=1,LDC
C1(j,i)=C1(j,i)+(A(j,k_vec(1))*d11 &

+ A(j,k_vec(2))*d21 &
+ A(j,k_vec(3))*d31 &
+ A(j,k_vec(4))*d41)&

C2(j,i)=C2(j,i)+(A(j,k_vec(1))*d12 &
+ A(j,k_vec(2))*d22 &
+ A(j,k_vec(3))*d32 &
+ A(j,k_vec(4))*d42)&

enddo MAQAO static analysis before (top) and after (bottom) optimizationenddo

• Dealing with the two hottest loops in the application

• Dense x sparse matrix multiply

• FLOP/cycle not optimal: 

• 12.8 but should be 16 

• AVX, 32 bits elements, perfect ADD/MUL balance

• Replacing LDC with its value ”hard coded” allows the compiler to factor for the two matrices 
C1 and C2

MAQAO static analysis before (top) and after (bottom) optimization

12



Tools to Explain

• MAQAO and similar tools provide information

• Profiler detects hot spot

• MAQAO goes beyond and evaluates the gap 

• Current and optimal static performance  

• It remains the discrepancy is difficult to understand• It remains the discrepancy is difficult to understand

• DECAN is an exploratory tool
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DECAN

• DECAN’s concept is simple 

• Measure the original binary

• Patch and replace the selected instructions group in 
the original binary
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the original binary

• New binary is generated for each patch

• Measure new binaries

• Measurements are represented in a CSV file 
• Analyze and compare



DECAN

• Codelet Decomposition

• MISTREAM 

• All vector arithmetic instructions are deleted 

• FPSTREAM

• All vector loads and store instructions are deleted

• NOFPNOMISTREAM• NOFPNOMISTREAM

• All vector arithmetic, load, and store instructions are deleted
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Codelet Contains:
Memory Instruction 

Arithmetic Instruction

Branch Instruction

Version without

Memory Instruction

Version without

Arithmetic Instruction

Version with Only 

Branch Instruction

Results Can 

Be Analyzed 

Separately



DECAN
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MAQAO + DECAN Provides

• Speed-up by a factor of 4  

• Up to 37% of the peak performance on Sandy 

Bridge

• Vectorization ratio crucial on Sandy Bridge• Vectorization ratio crucial on Sandy Bridge

• Value profiling
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Outline

2. Small Representative Codelets

4. Underlying Architecture

MicroBenchmarks MDL
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Underlying Architecture

� Understanding the target architecture

� Gives insight on potential bottlenecks

� Provides solutions to optimize a code

� How is it done?

� Emulators or simulators are slow if even available

� Microbenchmarking considers the hardware as a black 

box
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MicroTools

MICROBENCHMARKS

Template

XML Format

MicroCreator

Source-to-Source

Compiler

Generated 

Assembly 

or C Code

MicroLauncher
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MicroLauncher

Generic 

Multi-Process 

Benchmark Launcher

Performance 

Information

Energy 

Information



MicroTools Usage

MicroTools enables an exhaustive exploration 

of architecture performance.

1) Two real case-studies

� NOPS impact on dispatcher
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NOPS impact on dispatcher

� Memory + arithmetic interaction

2) How to deal with all the data collected?

� Automated reports analysis



NOPS Experiment

• Goal: Evaluate the dispatch unit

• Loop body parameters

• The NOP instruction size: 

• Varies from 1  to 9 bytes• Varies from 1  to 9 bytes

• The number of NOP instructions in the loop body: 

• Varies from 4 to 32

• Each loop body tested consists of the same NOP 

instructions repeated from 4 to 32 times
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NOPS Experiment
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NOPS Experiment
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NOPS Experiment

� Dispatcher capacity is around 3 nops/cycle

� For 1-byte and 2-byte nops

� Dispatch behavior is linear
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� Dispatch behavior is linear

� For large size nops

� Dispatch rate falls down to 0.96 instructions 

per cycle



Outline
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HANDLING THE DATA

� MicroCreator philosophy:

� Exhaustively search around a given program 
specification

� Sometimes, we need to reduce the space (ASK)
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� Sometimes, we need to reduce the space (ASK)

� A lot of data produced

� We need automatic data handling tools

− Validate the stability of the results

− Identify unexpected situations to help the engineer.



ASK (Adaptive Sampling Kit)

� ASK is a toolkit providing state of the art sampling strategies

� Modular and Extensible Pipeline:

� Combine different static and dynamic strategies

� Easy to add new custom sampling strategy

� Easy integration with benchmarking tools

ASK

User defines the 

domain space with 

an easy plugin

ASK contains 

multiple sampling 

point selections

ASK selects points to 

test until the studied 

variance is 

“acceptable” by the 

userselections

ASK provides the approximate 

domain space analysis



ASK: An example

� Search the 
domain space

� Find high 
variance regionsvariance regions

� Draw new points 
from high-
variance regions

“Flat” regions are less interesting to explore.



Order Influence Report

• Decomposes results per number of stores and 
loads

• Quickly identify configurations where 
performance depends on the order of performance depends on the order of 
instructions
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Outline

2. Small Representative Codelets
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Capacity Model
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Capacity Model

• Capacity Model and MDL

• Provide prediction and modelization of program 

performance

• However, alone the tools are less valuable• However, alone the tools are less valuable

• A need to centralize the data and analysis:

CTI : Codelet Tuning Instrastructure
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Outline
7. Tying it all together: CTI

2. Small Representative Codelets

4. Underlying Architecture
Codelet 

Finder
Small 

Codelets
MicroBenchmarks MDL

1. Full 

Application
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Codelet Tuning Infastructure (CTI)

Legend

• A single place to store a huge amount of data

• File manager

• File sharing, updating, processing, viewing

• Codelet manager

• CSV automatic file insertion

To Be Done

Done
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• CSV automatic file insertion

• Query the data

• Automate experiments

• Tools integrator
CTI

Codelet Finder

MicroTools

DECAN MAQAO

Files

Experiment Data



CTI Codelet Manager

Codelet Manager

A
sy

nc
hr

on
ou

s

Front end

Application

Codelets
Daemon

Registering 
Codelets
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Etc…M1 M2

Codelet
Finder

User

C.T.I.
Codelets



• Launching the « create » process

CTI Codelet Manager
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• Checking the codelets list

CTI Codelet Manager
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• Checking the codelet files

CTI Codelet Manager
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Codelet Binary

Cluster

CTI EntryCTI

CTI MAQAO Integration

CSVMAQAOCodelet Binary

1) Codelet to Binary

The codelet is sent to the 
cluster for complitation

CTI EntryCTI

3) CSV to CTI entry

CSV file is loaded into

CTI repository and saved

in an entry
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CSV
FileMAQAO

2) Binary to CSV

Binary is analyzed using
MAQAO and a CSV

file with results is 

produced



Loop 1
Analysis

Loop 2
Analysis

+ Number of instructions
+ Number of micro operations
+ Size (in bytes) of the loop
+ Number of XMM or YMM used registers
+ Does the loop fit in cache?
+ Number of bytes loaded and stored
+ Number of micro-operations per iteration for each 

execution port
+ Number of cycle per iteration for each execution port

CTI MAQAO Integration

CSV
File

Analysis

Loop n
Analysis

+ Number of cycle per iteration for each execution port
+ Vectorization ratios for:

Loads
Store
Add/Sub
Mul
Others

+ Predictions if data fit in L1 cache:
Number of cycles

FLOP/cycle
Bytes loaded/cycle

Bytes stored/cycle
Number of cycle if fully vectorized
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Overall Conclusions

• Studying a large application is difficult

• Dividing the application into codelets

• Using tools such as MAQAO and DECAN help 

understand the codelet’s performance and behavior

• Understanding the underlying architecture with • Understanding the underlying architecture with 

MicroTools and the MDL help detect hardware 

bottlenecks

• Analyzing all the data is only possible with automatic 

tools and infrastructures such as CTI

42



Acknowledgements

• Pablo Oliviera, UVSQ

• José Noudohouenou, UVSQ

• Franck Talbart, UVSQ

• William Jalby, CTO, UVSQ

• Jean-Thomas Acquaviva, Lead of the 

Performance Tools

• Bettina Krammer, Head of Software Tools, 

UVSQ

• Marie-Christine Sawley, Lab Director, Intel

43



ECR Contacts

• Address
UVSQ, 45 Av. des Etats-Unis, Buffon building, 5th floor

78 000 Versailles, France

• Web site: www.exascale-computing.eu

• Team
William Jalby, CT , william.jalby@uvsq.frWilliam Jalby, CT , william.jalby@uvsq.fr

Jean Christophe Beyler, Lead of Application Characterization, 

jean.christophe.beyler@intel.com

Marie-Christine Sawley, Co-design, marie-christine.sawley@intel.com

Bettina Krammer, Tools, bettina.krammer@uvsq.fr

• Collaboration partners

44



Thank you
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DECAN + MICROTOOLS
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DECAN + MICROTOOLS

47



DECAN + MICROTOOLS
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DECAN + MICROTOOLS
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Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency
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Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency

MOVSDMOVSD

2 LOADS 2 LOADS + 1 STORE
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Handling Stores

• L3 Nehalem

• Pure load patterns scale better with frequency

MOVSD MOVAPSMOVSD MOVAPS

2 LOADS 2 LOADS + 1 STORE 2 LOADS 2 LOADS + 1 STORE
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Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load 
configurations
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Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load 
configurations

MOVSD

2 LOADS 2 LOADS + 1 STORE
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Handling Stores

• L3 Sandy Bridge cache scales much better

• Perfect scaling for all the store and load 
configurations

MOVSD MOVAPS

2 LOADS 2 LOADS + 1 STORE 2 LOADS 2 LOADS + 1 STORE
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Energy
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Results

Used a dual-Nehalem, 6-cores each, nine 

possible frequencies

Used a Sandy Bridge Quad-core, sixteen 

frequenciesfrequencies

Compared with O3 execution, the Linux 

governors and static frequencies
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RTM on Nehalem
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Ratio Turboboost on REST
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What about Sandy bridge?
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What about Watts?
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Sandy Bridge’s Hardware counters 1/2
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Sandy Bridge’s Hardware counters 2/2
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