

Proceedings of the 2nd International Workshop

on GCC Research Opportunities
(GROW'10)

co-located with HiPEAC’10

Pisa, Italy
January 23rd, 2010

http://cTuning.org/workshop-grow10

Table of contents:

• Workshop foreword ………………………………………………………………………………………………… 3

Dorit Nuzman1 and Grigori Fursin2

1 IBM Haifa, Israel
2 INRIA, France

• GRAPHITE Two Years After: First Lessons Learned From Real-World
Polyhedral Compilation ………………………………………………………………………………………… 4
Konrad Trifunovic 2, Albert Cohen 2, David Edelsohn 3, Li Feng 6, Tobias
Grosser 5, Harsha Jagasia 1, Razya Ladelsky 4, Sebastian Pop 1,
Jan Sjödin 1, and Ramakrishna Upadrasta 2
1 AMD, USA
2 INRIA Saclay and Paris-Sud 11 University, France
3 IBM T. J. Watson Research, USA
4 IBM Haifa Research, Israel
5 University of Passau, Germany
6 Xi'an Jiaotong University, China

• Extending GCC with a multi-grain parallelism adaptation framework
for MPSoCs ……… 20
Nicolas BENOIT and Stephane LOUISE
CEA LIST, France

• A case study: optimizing GCC on ARM for performance of libevas
rasterization library ………………………………………………………………………………………………… 34
Dmitry Melnik 1, Andrey Belevantsev1, Dmitry Plotnikov1,
and Semun Lee2
1 ISP RAS, Russia
2 Samsung, Korea

• Portable and Efficient Auto-vectorized Bytecode: a Look at the
Interaction between Static and JIT Compilers ……………………………………………… 47
Erven Rohou
INRIA, France

• Compiler-controlled and Compiler-hinted
Voltage Scaling Approaches ………………………………………………………………………………… 61
Dmitry Zhurikhin 1, Andrey Belevantsev 1, Kirill Batuzov 1,
Valery Ignatiev 1, Roman Zhuykov 1, and Semun Lee 2
1 ISP RAS, Russia
2 Samsung, Korea

• Using Software Metrics to Evaluate Static Single Assignment Form
in GCC ……… 73
Jeremy Singer 1, Christos Tjortjis 2, and Martin Ward 3
1 University of Manchester, UK
2 University of Ioannina, Greece
3 De Montfort University, UK

• A New Intermediate Representation for GCC
based on the XARK Compiler Framework ……………………………………………………… 89
Jose M. Andion, Manuel Arenaz, and Juan Tourino
University of A Coruna, Spain

• Transforming GCC into a research-friendly environment: plugins for
optimization tuning and reordering, function cloning and program
instrumentation …………………………………………………………………………………………………… 101
Yuanjie Huang 1,2, Liang Peng 1,2, Chengyong Wu 1,

 Yuriy Kashnikov 4, Jörn Renneke 3, Grigori Fursin 3
1 ICT, Chinese Academy of Sciences, China
2 Graduate School of the Chinese Academy of Sciences, China
3 INRIA Saclay, France
4 University of Versailles at Saint-Quentin-en-Yvelines, France

Workshop foreword:

Welcome to the Second International Workshop on GCC
Research opportunities (GROW'10). This workshop series is
intended to bring together people from industry and academia
that are interested in conducting research based on GCC and
enhancing this compiler suite for research needs. The
workshop will promote and disseminate compiler research
with GCC, as a robust industrial-strength vehicle that supports
free and collaborative research.

This year, we received 15 submissions; each was evaluated by
four members of the program committee. Eight of the
submitted papers were accepted, based on their quality and
focus, for presentation at the workshop. Besides the papers,
the program this year also includes an invited talk and panel,
on future research and development directions of GCC.

We hope that this year's attendees will find the ideas
presented in the papers and the panel discussions interesting
and useful. Best wishes for a productive meeting!

Grigori Fursin, Dorit Nuzman
GROW'10 organizers

GRAPHITE Two Years After
First Lessons Learned From Real-World Polyhedral Compilation

Konrad Trifunovic2, Albert Cohen2, David Edelsohn3, Li Feng6, Tobias Grosser5,
Harsha Jagasia1, Razya Ladelsky4, Sebastian Pop1, Jan Sjödin1, and Ramakrishna

Upadrasta2

1 Open Source Compiler Engineering, AMD, Austin, Texas, USA
{harsha.jagasia, sebastian.pop, jan.sjodin}@amd.com

2 INRIA Saclay – Île-de-France and LRI, Paris-Sud 11 University, Orsay, France
{albert.cohen, konrad.trifunovic, ramakrishna.upadrasta}@inria.fr

3 IBM T. J. Watson Research, Yorktown Heights, USA
dje@watson.ibm.com

4 IBM Haifa Research, Haifa, Israel
razya@il.ibm.com

5 University of Passau, Passau, Germany
grosser@fim.uni-passau.de

6 Xi’an Jiaotong University, Xi’an, China
nemokingdom@gmail.com

Abstract. Modern compilers are responsible for adapting the semantics of
source programs into a form that makes efficient use of a highly complex, hetero-
geneous machine. This adaptation amounts to solve an optimization problem in
a huge and unstructured search space, while predicting the performance outcome
of complex sequences of program transformations. The polyhedral model of com-
pilation is aimed at these challenges. Its geometrical, non-inductive semantics
enables the construction of better-structured optimization problems and pre-
cise analytical models. Recent work demonstrated the scalability of the main
polyhedral algorithms to real-world programs. Its integration into production
compilers is under way, pioneered by the graphite branch of the GNU Compiler
Collection (GCC). Two years after the effective beginning of the project, this
paper reports on original questions and innovative solutions that arose during
the design and implementation of graphite.

1 Introduction

Despite several decades of research into the Polyhedral model, there is still no general-
purpose production compiler using the Polyhedral model internally. The situation is
changing with the demonstration of the scalability of polyhedral algorithms and with
the widespread dissemination of multicore processors and hardware accelerators. Two
proprietary polyhedral compilers are in development: the R-Stream compiler from
Reservoir Labs [26], and IBM’s polyhedral extension of its XL compiler suite [35].

This paper describes the graphite compilation pass of GCC, embedding polyhedral
analyses and transformations into the GNU Compiler Collection (GCC) [32]. Polyhe-
dral information is extracted directly from the GIMPLE intermediate representation,
in three-address, Static Single Assignment (SSA) form. This is a major difference with
traditional source-to-source polyhedral compilers which operate on high-level abstract
syntax. Operating directly on the three-address code brings in new challenges but also
new opportunities: we can leverage existing analyses in the compiler and interact with
a wealth of optimizations.

- 4 -

graphite is based on the polyhedral representation designed by Girbal et al. [13].
This rich algebraic representation enables the composition of polyhedral generaliza-
tions of classical loop transformations, decoupling them from the syntactic form of the
program. Classical transformations like loop fusion or tiling can be composed in any
order and generalized to imperfectly-nested loops with complex domains, without inter-
mediate translation to a syntactic form (avoiding code size explosion). graphite also
aims at providing precise performance models and profitability prediction heuristics.
Its applications include automatic parallelization and vectorization, offloading of com-
putational kernels onto hardware accelerators, memory hierarchy usage optimizations,
cost modelling and static code analysis (e.g., static debugging of parallel programs).

The paper is structured as follows. Section 2 discusses related work. Section 3
describes the design of graphite. Section 4 explores the current optimizations im-
plemented in graphite. Representation of pointer accesses is an original issue for
polyhedral compilation and is presented in Section 5, before the conclusion in Sec-
tion 6.

2 Related work

There have been many efforts in designing an advanced loop nest transformation in-
frastructure. Most loop restructuring compilers introduced syntax-based models and
intermediate representations. ParaScope [10] and Polaris [6] are dependence based,
source-to-source parallelizers for Fortran. KAP [19] is closely related to these academic
tools.

SUIF [16] is a platform for implementing advanced compiler prototypes. PIPS [17] is
one of the most complete loop restructuring compiler, implementing polyhedral anal-
yses and transformations (including affine scheduling) and interprocedural analyses
(array regions, alias). Both of them use a syntax tree extended with polyhedral anno-
tations, but not a unified polyhedral representation.

The MARS compiler [28] unifies classical dependence-based loop transformations
with data storage optimizations. However, the MARS intermediate representation only
captures part of the loop information (domains and access functions): it lacks the
characterization of iteration orderings through multidimensional affine schedules.

The first thorough application of the polyhedral representation was the Petit tool
[20], based on the Omega library [23]. It provides space-time mappings for iteration
reordering, and it shares our emphasis on per-statement transformations, but it is in-
tended as a research tool for small kernels only. We also use a code generation technique
that is again significantly more robust than the code generation in Omega [4].

Semi-automatic polyhedral frameworks have been designed as building blocks for
compiler construction or (auto-tuned) library generation systems [21, 9, 39, 8, 36]. They
do not define automatic methods or integrate a model-based heuristic to construct
profitable optimization strategies.

The graphite project was first announced by Pop et al. in 2006 [32] but real
development work started only one year later: the number of changes committed to
the graphite branch are presented in Figure 2. The design of graphite is largely
borrowed from the WRaP-IT polyhedral interface to Open64 and its URUK loop nest
optimizer [13]. The CHiLL project from Chen et al. revisited the URUK approach fo-
cusing on source-to-source transformation scripting [8, 36]. Unlike URUK and CHiLL,
graphite aims at complete automation, possibly resorting to iterative search or sta-
tistical modeling of the profitability of program transformations. Besides, unexpected

- 5 -

design and implementation issues have arisen, partly due to the design of GCC itself,
but mostly due to the integration of the polyhedral representation in a general-purpose
compilation flow, such as pointers, profile data, debugging information, resource usage
(compilation time), pass ordering, interaction among passes, etc.

3 Design

The polyhedral analysis and transformation framework called graphite is imple-
mented as a pass in the GNU Compiler Collection compiler. The main task of this
pass is to: extract the polyhedral model representation out of the GCC three-address
GIMPLE representation, perform the various optimizations and analyses on the poly-
hedral model representation and to regenerate the GIMPLE three-address code that
corresponds to transformations on the polyhedral model. This three stage process is
the classical flow in polyhedral compilation of source-to-source compilers [13, 7]. Be-
cause the starting point of the graphite pass is the low-level three-address GIMPLE
code instead of the high-level syntactical source code, some information is lost: the loop
structure, loop induction variables, loop bounds, conditionals, data accesses and reduc-
tions. All of this information has to be reconstructed in order to build the polyhedral
model representation of the relevant code fragment.

GIMPLE, SSA, CFG

GIMPLE, SSA, CFG

GPOLYSCoP outlining

SESE regions

GPOLY construction

Dependence Analysis

Transformations

transformed GPOLY

GLOOG (CLOOG based)GRAPHITE pass

Fig. 1. Stages of the graphite pass

Year Commits

2009 497
2008 216
2007 36
2006 10

Fig. 2. Changes to the graphite branch
SCoP1

Fig. 3. Full SCoP

SCoP1

SCoP2

SCoP3

Fig. 4. Split SCoP

Figure 1 shows the stages inside the graphite pass: (1) the Static Control Parts
(SCoPs) are outlined from the control flow graph, (2) polyhedral representation is
constructed for each SCoP (GPOLY construction), (3) data dependence analysis and
transformations are performed (possibly multiple times), and (4) GIMPLE code cor-
responding to transformed polyhedral model is regenerated (GLooG). The details of
each stage are given in the following subsections.

- 6 -

b_I_lsm.5_30 = PHI <b_I_lsm.5_5(4)>

b[i_21] = b_I_lsm.5_30;

i_11 = i_21 + 1;

bb 6bb 5

bb 7bb 8

else

 goto <bb 8>;

if (i_11 < N) goto <bb 7>;

goto <bb 4>

goto <bb 3>;return;

bb 3
i_21 = PHI <i_11(7), 0(2)>

b[i_21] = 0.0;

b_I_lsm.5_16 = b[i_21];

goto <bb 6>;

else

if (j_10 < N) goto <bb 5>;

D.1_7 = x[j_22];

D.0_6 = A[i_21][j_22];

D.3_9 = D.2_8 + pre.3_28;
b_I_lsm.5_5 = D.3_9;

j_10 = j_22 + 1;

D.2_8 = D.1_7 * D.0_6;

bb 4
pre.3_28 = PHI <D.3_9(5), 0.0(3)>

j_22 = PHI <j_10(5), 0(3)>

Fig. 5. GIMPLE code with CFG.

bb 5

goto <bb 4>

return; goto <bb 3>;
bb 8 bb 7

bb10

pre.3_28 = D.20_31;

D.0_6 = A[i_21][j_22];

D.1_7 = x[j_22];

D.2_8 = D.1_7 * D.0_6;

D.3_9 = D.2_8 + pre.3_28;

b_I_lsm.5_5 = D.3_9;

j_10 = j_22 + 1;

bb 3 i_21 = PHI <i_11(7), 0(2)>

b[i_21] = 0.0;

b_I_lsm.5_16 = b[i_21];

Gen_Red.6[0] = 0.0;

Gen_Red.6[0] = D.3_9;

Close_Phi.7[0] = b_I_lsm.5_5;

D.20_31 = Gen_Red.6[0];

if (j_10 < N) goto <bb 5>;

else

goto <bb 6>;

bb 6

Cross_BB_sd.8[0] = b_I_lsm.5_30;

 b_I_lsm.5_30 = Close_Phi.7[0];

 goto <bb 8>;

j_22 = PHI <j_10(5), 0(3)>

b_I_lsm.5_35 = Cross_BB_sd.8[0];

b[i_21] = b_I_lsm.5_30;

i_11 = i_21 + 1;

if (i_11 < N) goto <bb 7>;

else

bb 4

Fig. 6. Single-element arrays inserted to
handle scalar dependences and reductions

Listing 1.1. Matvect
for (i = 0; i < N; i++) {

b[i] = 0;
for (j = 0; j < N; j++)

b[i] += A[i][j] * x[j];
}

j

i

bb 3 bb 6

bb 4

0

0 1 2

0

Fig. 7. LST tree

DS
bb3 =

{
(i) | 0 ≤ i ≤ N − 1

}
DS

bb4 =
{

(i, j) | 0 ≤ i ≤ N − 1 ∧ 0 ≤ j ≤ N − 1
}

DS
bb6 =

{
(i) | 0 ≤ i ≤ N − 1

}
Fdr1 =

{
(i, a, s1) | a = 0 ∧ s1 = i ∧ 0 ≤ s1 ≤ N − 1

}
Fdr2 =

{
(i, j, a, s1) | a = 1 ∧ s1 = j ∧ 0 ≤ s1 ≤ N − 1

}
Fdr3 =

{
(i, j, a, s1, s2) | a = 2 ∧ s1 = i ∧ s2 = j ∧ 0 ≤

s1, s2 ≤ N − 1
}

Fdr4 =
{

(i, a, s1) | a = 0 ∧ s1 = i ∧ 0 ≤ s1 ≤ N − 1
}

θbb3 =
{

(i, t1, t2, t3) | t1 = 0 ∧ t2 = i ∧ t3 = 0
}

θbb4 =
{

(i, j, t1, t2, t3, t4, t5) | t1 = 0 ∧ t2 = i ∧ t3 =

1 ∧ t4 = j ∧ t5 = 0
}

θbb6 =
{

(i, t1, t2, t3) | t1 = 0 ∧ t2 = i ∧ t3 = 2
}

Fig. 8. Components of the polyhedral representation of
the GIMPLE code

3.1 SSA based SCoP outlining

The scope of the polyhedral program analysis and manipulation is a sequence of loop
nests with constant strides and affine bounds. It includes non-perfectly nested loops
and conditionals with boolean expressions of affine inequalities.

- 7 -

The maximal Single-Entry Single-Exit (SESE) region of the Control Flow Graph
(CFG) that satisfies those constraints is called a Static Control Part (SCoP) [13, 7].
GIMPLE statements belonging to the SCoP should not contain calls to functions with
side effects (pure and const function calls are allowed) and the only memory references
that are allowed are accesses through arrays with affine subscript functions.

Since the graphite pass is scheduled at the stage where three-address code is in
Static Single-Assignment form, all the analyses based on the SSA are available for use
in graphite. This is crucial: in order to perform SCoP outlining the scalar evolution
analysis framework of GCC is used [33]. Scalar evolution relies on SSA form to compute
closed form expressions for induction variables. These closed forms are represented by
structures called CHains of RECurrences (CHREC).

Chains of recurrences might represent induction variables (loop induction variables,
array access subscript functions) that are affine or non-affine. For example, the scalar
evolution of the j 22 variable in the basic block 4 (Figure 5) is expressed as follows:
{0,+, 1}2, meaning that the starting value of the induction variable is 0, and it is
incremented by 1 in each iteration of the loop number 2 (loop corresponding to basic
blocks 5 and 6).

SCoP outlining proceeds as follows: first, a new SCoP region is opened, and then
the basic blocks of the CFG are scanned in the dominator order. If the basic block
contains a statement that is not representable in the polyhedral model then the whole
basic block is deemed difficult so the current SCoP region is closed and a new SCoP
is opened at the basic block dominated by the difficult basic block. Figure 3 shows
one SCoP containing all the basic blocks, whereas Figure 4 shows how the difficult
statement causes multiple SCoPs to be formed.

There exist limitations to the SCoP detection algorithm currently implemented in
graphite: for example, determining whether the scalar evolution of a variable could
be handled in the polyhedral model, or whether the variable should be considered a
parameter of the SCoP. We think that a detection of SCoPs based on the structured
CFG with SESE regions [18] would be more appropriate. A structural SCoP detection
traverses the regions tree starting from the outermost SESE region, and tries to prove
that all the statements in that maximal region can be handled in the polyhedral repre-
sentation. When a difficult statement is detected, the statement is analyzed in all the
regions containing it, from the outermost region to the innermost one, until either the
statement is simple enough in a smaller region, or the region is the statement itself, in
which case the statement cannot be handled at all. We consider the integration of a
structural SCoP detection algorithm in future versions of GCC.

3.2 Construction of the polyhedral representation

Once the SCoPs are outlined, the polyhedral information is built for each basic block
contained in a SCoP. The polyhedral representation consists essentially of three com-
ponents: iteration domains, schedules, and data accesses.

The polyhedral information attached to each basic block in a SCoP is internally
called GPOLY. All the components of the polyhedral model are represented as a system
of affine equalities or inequalities, and for that purpose a polyhedral library is used.
Currently, the Parma Polyhedra Library (PPL) [3] is used, but the representation is
designed to accommodate other similar libraries.

Once again, the scalar evolution analysis framework is used to deduce the affine form
of the loop bounds and global parameters (to build the iteration domains), memory
addressing expressions (for the data accesses). Initial scheduling functions for each basic

- 8 -

block are deduced from the Loop Statement Tree (LST) showing the relative ordering
of the basic blocks, and initial nesting structure of the loops. An example of the LST is
given in Figure 7. More details explaining all the components of the polyhedral model
are given in the following subsection.

Contrary to source-to-source polyhedral compilers [17, 31, 25], we have chosen to
represent the schedules and the domains on a per Basic Block (BB) granularity instead
of on a per statement granularity. This choice is somewhat rigid, since it prevents the
independent scheduling of GIMPLE statements belonging to the same basic block.
On the other hand, constructing the polyhedral representation per basic block might
provide greater scalability. SCoP control and data flow are represented with three
components of the polyhedral model [13, 7, 34]:

Iteration domains capture the dynamic instances of all basic blocks — all possible
values of surrounding loop induction variables — through a set of affine inequalities.
Each dynamic instance of a basic block S is denoted by a pair (S, i) where i is the
iteration vector containing values for the loop induction variables of the surrounding
loops, from outermost to innermost. The dimension of iteration vector i is dS . If the
basic block S belongs to a SCoP then the set of all iteration vectors i relevant for S
can be represented by a polytope: DS =

{
i | DS × (i,g, 1)T ≥ 0

}
which is called the

iteration domain of S, where g is the vector of global parameters whose dimension is
dg. Global parameters are invariants inside SCoP, but their values are not known at
compile time (parameters representing loop bounds for example).

Data references capture the memory locations of array data elements on which GIM-
PLE statements operate. In each SCoP, by definition, the memory accesses are per-
formed through array data references. A scalar variable can be seen as a zero-dimensional
array (array with only one dimension and only one element A[0]). Each array data ref-
erence (data reference) inside a basic block is wrapped inside a poly dr structure
which contains the data reference polyhedron. The data reference polyhedron F encodes
the access relation mapping iteration vectors in DS to the array subscripts represented
by the vector s: F =

{
(i, a, s) | F × (i, a, s,g, 1)T ≥ 0

}
. The alias set number a cap-

tures points-to information (pointer aliasing); it allows to represent accesses through
arbitrary pointers and will be defined in Section 5.

In contrast to classical polyhedral model representation [11, 22] we have chosen to
represent data references as relations. This means that there is no one-to-one corre-
spondence between iteration vector and subscript. This enables us to represent memory
regions – when the data reference information is not complete (coming from interpro-
cedural analysis for example). Nevertheless, very often, the correspondence between
iterator vectors and data reference subscripts is a functional affine mapping s = f(i,g).

In previous literature, the problem of link between dependence analysis and the
analyses preceeding it, like alias analysis, has not been explored. This leads to ineffi-
ciency and impreciseness in representation, which are further exacerbated by software
engineering constraints like modularity and portability. In Section 5, we will see a dis-
cussion of the problem and its algorithmic characterization as a hard combinatorial
problem.

Scheduling functions are also called scattering functions inside graphite following
CLooG’s terminology. While iteration domains define the set of all dynamic instances
for each basic block, they do not describe the execution order of those instances. In
order to define the execution order we need to give to each dynamic instance the

- 9 -

execution time (date) [11, 22]. This is done in graphite by constructing the scattering
polyhedron representing the relation between iteration vectors and time stamp vector
t: θ =

{
(t, i) | Θ × (t, i,g, 1)T ≥ 0

}
.

Dynamic instances are executed according to the lexicographical ordering of time-
stamp vectors. By changing the scattering function, we can reorder the execution order
of dynamic iterations, thus performing powerful loop transformations. More details on
the transformations are given in Subsection 3.5.

Given the example GIMPLE code in Figure 5, the components of the polyhedral
model representation are given in Figure 8.

3.3 Dependence analysis

In order to represent the semantics of the original program in the polyhedral model
the dependence between dynamic instances of statements needs to be represented. The
dependences are necessary to guarantee the correctness of loop transformations.

We are considering data dependences coming from the reads and writes of array
elements. By definition [38], there is a data dependence from the dynamic instance of
a basic block (Si, iSi

) to the dynamic instance of basic block (Sj , iSj
) if both iteration

vectors belong to their respective iteration domains (the execution is feasible), both
instances refer to the same memory location and at least one of the data references is
write and the instance (Si, iSi

) is executed before (Sj , iSj
).

The Polyhedral Dependence Analysis (PDA) implemented in graphite is an instance-
wise dependence analysis – meaning that the dependences are represented as polyhedra
encoding the dependence relations between basic block instances. If projected to the
Cartesian product of two iteration domains [38, 7, 34], the polyhedron encodes the iter-
ation of the source of the dependence and the iteration of the sink of the dependence:

3.4 Handling scalar dependences

While the classical dependence analysis in the source-to-source polyhedral compil-
ers considers only the data dependences between arrays (treating scalars as zero-
dimensional arrays), this approach is not the most appropriate in the context of three-
address code in the SSA form. If we are not considering scalar dependences, we are not
capturing all the semantical constraints of the program – the transformed code could
be illegal. If we are to convert all scalars to zero-dimensional arrays we would greatly
increase the compilation time (polyhedral dependence check is algorithmically costly)
and produce inefficient code.

The approach taken in graphite framework is to classify the scalar dependences
into the following categories:

Intra basic block dependences occur between scalars inside a basic block. Those
dependences are not considered by PDA in graphite. Since the statements inside
the basic block cannot be rescheduled, the scalar dependences between statements
inside a same basic block are not affected by polyhedral transformations. Those
dependences are captured by use-def chains of the SSA representation.

Cross basic block dependences occur between scalars belonging to two different
basic blocks. Those scalars are rewritten into zero-dimensional (single-element)
arrays, such that PDA considers them as the regular array accesses. An example
is given in Figure 6, where new zero-dimensional arrays (called Cross BB sd) are
introduced.

- 10 -

Reduction dependences occur in data flow cycles that contain associative and com-
mutative operations, like an accumulator variable performing a summation over the
values of an array. For the regular reductions the new zero-dimensional arrays are
introduced (as seen in Figure 6, where Gen Red and Close Phi arrays are intro-
duced). If the reduction operator can be proved to be commutative and associative,
then the dependences are marked as belonging to such a reduction. The former
enables the optimizations, since the reduction operations can be rescheduled, dis-
regarding the data dependences, if proved to be associative and commutative.

3.5 Transformations

According to the compositional approach of polyhedral transformations [13], the com-
position of multiple loop transformations in the polyhedral model can be expressed as
a single scheduling transformation. By modifying the scheduling relations θ for each
basic block, and regenerating the GIMPLE code according to those new schedules, we
are able to perform arbitrary rescheduling of the basic blocks inside a SCoP.

In order to preserve the legality of the transformations, the legality check is per-
formed for each data dependence relation.

Given the original data dependence relation P(Si,Rk) →(Sj ,Rl) representing the pairs
of iterations which need to be executed in the specific order, the other polyhedron
P ′(Si,Rk) →(Sj ,Rl) is computed, giving those pairs of iterations that are violating the
original dependence (they are executed in reversed order according to the new sched-
ule). If the intersection of two polyhedra is not empty, then there exists at least one
pair of iterations that is executed in the wrong order, thus rendering the transformation
illegal. The whole process is called Violated Dependence Analysis [38].

The task of graphite is to look for such transformations that are beneficial for
optimizing various criteria, but which are legal at the same time. The simple search
heuristic is looking for good transformations, rejecting those which are illegal. This
is certainly an iterative process. If none of the transformations seems legal, then no
transformation is done. graphite currently implements loop interchange, loop strip-
mining, loop distribution and loop-blocking.

3.6 Code generation

In source-to-source polyhedral compilers, the code generation pass is the last one,
generating the new loop structures to scan statement instances in the order defined by
the modified schedule.

In graphite it is not the syntactical source code that is the final result of the
pass: graphite should be able to regenerate the GIMPLE code. Furthermore, the
generated GIMPLE code has to be reinserted back into the CFG, respecting the SSA
form invariants and passed to the further passes after graphite.

Multiple loop generation tools exist that operate on the polyhedral model. The most
mature one is the CLooG (Chunky Loop Generator) [4]. CLooG is used in graphite
as the major component of code generation. Since CLooG is meant for generating
syntactic code (mainly C code), it cannot be used directly: CLooG generates an internal
representation called CLAST which is a simple abstract-syntax tree containing only
loops, conditions, and statements. In our case statements are replaced with basic blocks.

CLooG is fed by the polyhedral representation (GPOLY) and is asked to generate
a CLAST. The nodes of the abstract-syntax tree are pointers to original basic blocks.
Depending on the loop transformations, the basic blocks might be rescheduled, moved

- 11 -

to other loops, or even replicated (when performing a transformation). The final effect
is represented in the CLAST. The CLAST tree is traversed and the basic blocks are
put into the their new positions in the GIMPLE CFG, loop structures are regenerated
and some basic blocks are replicated.

Even in the case of the identity transformation (no schedule modification), the
newly generated loops according to the CLAST tree have the new induction variables.
All the basic blocks belonging to a SCoP have to be scanned, and the old induction
variables have to be replaced with new induction variables.

3.7 Algorithm choices and compilation speed

Polyhedral optimizers have challenges with scalability and graphite is no exception.
While developing graphite, we have encountered some interesting issues that affect
compilation speed and are exploring algorithms choices to improve performance.

One example is loop unrolling. C++ templates are a powerful feature used in many
high-performance codes; template meta-programming is combined with inlining to pro-
duce specialized loops. This style creates a large abstraction penalty that GCC has cho-
sen to address with an early inner loop unrolling pass. Applications (such as Tramp3D
in the GCC test suite) show significant performance improvement through this tech-
nique. However, this also affects loop and data dependence analysis for optimizations
such as auto-vectorization and graphite, whose analysis and compilation time grows
with the number of variables in each SCoP. We explore ways to tune this unrolling in the
presence of graphite and eventually to implement such unrolling within graphite
itself.

4 Optimizations

Loops that carry no dependence may be good candidates to be parallelized, i.e, different
iterations of the loop might be executed simultaneously by multiple threads [1]. In GCC,
two main infrastructures are used to accomplish loop parallelization: data dependency
analysis and the GNU OpenMP library. OpenMP defines language extensions to C,
C++, and Fortran for implementing multithreaded shared memory applications [29].
Automatic generation of such extensions by the compiler relieves programmers from
the manual parallelization process. OpenMP support has been implemented in GCC
since version 4.2 [27], and together with existing data dependence analyses, opened the
door for automatic parallelization in GCC.

Automatic parallelization was first implemented in version 4.3 as a technology pre-
view. It is able to detect loops carrying no dependences, and generate parallel code by
creating and inserting the necessary OpenMP structures and support. It is triggered
by -ftree-parallelize-loops=x, where x defines the number of threads to create.

Generating parallel code Once the GCC auto-parallelizer decides to parallelize a
loop, it generates the parallel code using the OpenMP structures to define the paral-
lel section and relevant attributes like the scheduling method, the shared vs. private
variables, atomic operations etc.

In Figure 9, we see an example of a sequential loop, and the parallel code gener-
ated for it (assuming the number of threads requested by the user is 4). .paral data
is a structure field gathering all the shared data that should be provided for each

- 12 -

thread. The loop is outlined to a separate function, parloop. loopfn(), which is run
individually by each thread, supplied with the shared data.

The GNU OpenMP library provides two builtins which define the parallel section:
GOMP parallel start() creates the threads. GOMP parallel end() is a barrier where
all the threads are joined. After GOMP parallel start() is executed, 4 threads are cre-
ated. Each thread is executing the outlined function, iterating the loop with a different
(and exclusive) interval of iterations, represented as start and end at the example. After
GOMP parallel end() is executed, the threads are joined back to one master thread.

parloop
{

for (i = 0; i < N; i++)
x[i] = i + 3;

}
(a)

parloop
{

.paral_data.x = &x;
__builtin_GOMP_parallel_start (parloop._loopfn ,

&.paral_data , 4);
parloop._loopfn (&. paral_data);

__builtin_GOMP_parallel_end ();
}

parloop._loopfn (. paral_data)
{

for (i = start; i < end; i++)
(*. paral_data ->x)[i] = i + 3;

}
(b)

Fig. 9. (a) sequential loop (b) parallel code generated

for i
for j

A[i][j] = A[i-1][j]

(a)

for j
for i

A[i][j] = A[i-1][j]

(b)

Fig. 10. (a) the original loop (b) after interchange

Integration of the parallelizer with graphite The initial analysis used for the
parallelizer was based on the Lambda framework [24]. It has been replaced with the
graphite based dependence analysis.

Integrating the parallelizer with graphite is profitable for a number of reasons:

– graphite dependence analysis is more accurate than Lambda, hence could detect
more parallel loops [38].

– The ability of graphite to perform long and complex compositions of program
transformations enables to extract more parallelism [13] and to optimize for paral-
lelism and locality simultaneously [7].

– Since graphite is able to represent sequences of loop transformations as a single
scheduling transformation, it seems natural to incorporate a cost model into it to
control the transformation sequence. Parallelization is a key transformation whose
cost and benefit should be applied to such a model, in the hope of deriving the

- 13 -

most profitable combination of loop transformations. We worked on such a cost
model in the special case of automatic vectorization [37], extension to more general
parallelization and to the management of temporal locality is in progress.

Figure 10 shows a simple example demonstrating the interaction of loop paral-
lelization with another transformation, loop interchange. The original loop is shown in
Figure 10(a). The outer loop carries a dependence and therefore can’t be parallelized.
Parallelizing the inner loop is possible, but results in executing a synchronization bar-
rier at the end of each outer-loop iteration, therefore executing a synchronization i
times. If, however, we interchange the loop, as shown in (b), we can parallelize the
outer-loop, resulting in use of just one barrier.

Automatic parallelization was integrated to graphite as part of the upcoming
GCC4.5. In addition to -ftree-parallelize-loops=x, -floop-parallelize-all is
specified to enable it as a graphite-based transformation.

5 Alias Information and Polyhedra

Alias analysis is an intrinsic module of any compiler as it facilitates any other opti-
mization that involves variable disambiguation, such as scheduling or identifying in-
variants, redundant subexpressions, etc. For scalability reasons, most compilers use
fast but rather imprecise analysis like Anderson’s algorithm [2], a context-insensitive,
flow-insensitive subset-based may-alias analysis. GCC relies on an extension of this
algorithm that is field-sensitive as well [5, 30].

A data-reference is either a scalar variable, or an array-reference, or an offset of an
array by a compile-time constant, or an offset of an array by an index, or a pointer
variable. The difference between the latter four types in C is that the first three resolve
to a constant pointer (like const int *) referring to a stack location, while the last one
can only be resolved to an ordinary pointer (like int *) referring to a heap location.

Example In the following code excerpt, it can be seen that a and p may-alias to each
other, and so do p and b, but a and b do not.

int a[10], b[10];
void foo (int *p);
Most alias analysis algorithms return a points-to relation, where data references are

mapped to abstract stack or heap locations called alias sets. We will also refer to this
relation as the forward mapping. On the above example it is: a→ {A1}, p→ {A1, A2},
b→ {A2}.

In GCC (since version 4.4), the result of the alias-analysis is encoded in an alias
oracle that returns the information about presence or absence of may-alias relation
between pairs of data references. It can be seen that such a portable interface goes well
with various scalar analyses that use it.

The information that is provided by alias-oracle can be represented as an undirected
graph, whose vertices correspond to data-references and whose edges represent presence
of alias-relationship between pairs of data-references.

The aliasing relation for the previous example can be represented as a graph
Ga: a — p — b.

It is known that polyhedral dependence analysis for a given SCoP usually makes
O(n2) polyhedral operations, when n is the number of convex polyhedra representing
memory references. Dependence analysis can exploit the properties of Ga such that
the number of calls to polyhedral libraries can be reduced. The above examples show

- 14 -

that the dependence analysis could effectively use the information provided by the
alias-analysis to its full potential.

To represent the alias information, graphite creates an additional dimension (the
first) for each array reference. This additional dimension, henceforth called alias di-
mension is indexed by the alias set to which that particular data reference points to.
A data reference however, could be a member of more than one alias set. For example,
variable p in the above example, belongs to two alias-sets A1 and A2. Though this
may be because of impreciseness of the algorithm used in the alias analysis, it could as
well be because of a true aliasing of the associated memory regions. Hence, graphite
indexes the alias dimension by the disjunction of alias-sets to which that particular
data-reference points to.

In the above example, if we let DR
a , DR

p and DR
b be the original polyhedral domains

of the three variables a, p and b, then the corresponding memory references, annotated
by the alias dimension would be memory reference[A1,DR

a], memory reference[A1 ∨
A2,DR

p], and memory reference[A2,DR
b] respectively.

Definition: Minimum Edge Clique Cover For an undirected graph G = (V,E), the
Minimum-Edge Clique Cover is defined to be a collection A1, A2, . . . , Ak of subsets of
V , such that each Ai induces a complete subgraph of G and such that for each edge
(u, v) ∈ E, there is some Ai that contains both u and v. This problem is also called
Edge Clique Cover (ECC). Another problem similar to ECC is the Vertex Clique Cover
(VCC) that computes a cover on cliques of vertices.

It is easy to see that if there is a clique in Ga, then polyhedral dependence analysis
should test for dependence between all variables participating in the clique to determine
the nature of dependence between the data-references participating in the clique. If on
the other hand, there is no edge between a pair of variables, there is no need for
polyhedral operations. This information is equivalent to cliques in Ga. In the above
example, it can be seen that there are two 2-cliques: {a, p} and {p, b}. Polyhedral
dependence analysis should test for dependence between each of these pairs. It however
does not need to test for dependence between a and b.

It is clear that maximizing the clique size in Ga is helpful. But, it is the edges of
Ga that correspond to possible intersections of memory areas, thereby corresponding
to aliasing of data-references. Hence, the problem that minimizes the number of rep-
resentative elements in the alias-dimension should be an edge-clique, thereby meaning
ECC (rather than vertex-clique or maximum clique). Further, as the edges are covered
by the representative element, along with all possible edges which could alias with it,
the dependence analysis can thus use alias-set representatives to drive its algorithm.

5.1 ECC: problem and solution

The ECC problem is an NP-Hard problem (page 194 in [12]). It is different from
the more widely studied VCC problem, which is closely related to the graph coloring
problem. The VCC solution for a graph G, though being a NP-Hard problem itself –
could be trivially found after coloring the complement graph G′.

No fast running and close to optimal heuristic is known for ECC. It may be very hard
to solve even in an approximate sense. On the other hand, the other above mentioned
problems (VCC and graph coloring) have linear-time and exact solutions for special
classes [14].

The algorithms for ECC either solve exactly by a brute-force search, or by using
a heuristic developed for VCC or graph-coloring. In Gramm et. al’s paper [15], which

- 15 -

is state of the art for this problem, new algorithms for both methods are suggested.
In their paper, the running time of a previously known heuristic is improved from
O(|V ||E|2) to a more acceptable O(|V ||E|). The major contribution of the paper how-
ever, are data-reduction rules that help reduce the input problem size by preprocessing.
The method suggested in [15] is that the resultant graph after iteratively applying the
rules is usually smaller, and hence can be subjected to either of the above mentioned
methods (exact-solution or heuristic) for a faster solution.

5.2 Empirical analysis of alias graphs

We have done an empirical analysis of the graphs that are returned by the alias-analysis
currently in GCC.

Of the 4481 graphs from SPEC Cpu 2006 benchmarks, 4367 are trivial, with the
definition of trivial being |V | < 10 ∨ |E| < 5. Only 328 graphs are non-trivial. Of the
latter kind of graphs, only 11 graphs are interesting. In the rest of the graphs, every
connected component is a clique. In all the graphs, the number of vertices participating
in the maximal cliques vary in the range 1 ≤ |V | ≤ 90.

From the above empirical analysis, one could say that the alias-oracle which marks
every connected component as a clique is generally very imprecise and hence advanced
algorithms for solving ECC are not needed in the present context. A general counter-
example to such a reasoning is the large size of graphs, taken from real-world ex-
amples, containing a wide range of maximal cliques. Further, we also have specific
counter-examples which show that exceptions to the above statement exist in real
world. Figure 11 depicts the alias relation for a kernel in the GCC-testsuite extracted
from an H.264 decoder. Each ellipse on the (i) graph represents a clique. A block-edge
between two ellipses X and Y represents an edge between every pair of vertices in the
set {X,Y }.

9, 10, 11, 12,

13, 14, 15, 16

9, 10, 11, 12,

13, 14, 15, 16

1,5

3,7
4,6

2,8
1,5

3,7
4,6

2,8

(i) (ii)

Fig. 11. Alias relation for an H.264 kernel.

The optimal solution of ECC is shown on the (ii) graph. It has 4 cliques, each of
which is a union of one of the smaller cliques with the biggest clique.

We now describe the polynomial algorithm that we chose to compute an ECC:
Input: an alias graph Ga

Output: a mapping from vertices to the alias-set representatives.

– Do a Depth First Search (DFS) on Ga and separate out the connected components
A1, A2, . . . , Ak. This step takes max(|V (Ga)|, |E(Ga)|) time.

– Check if each connected component Ai is a clique or not. This step takes |V (Ai)|2
time, where V (Ai) is the number of nodes of the connected component Ai.

- 16 -

– If Ai is small enough (|V | < 5 ∨ |E| < 10), then search for solution using a direct
search.

– Apply the simple and cheaper data-reduction rules (mainly Rule 1 and Rule 2), as
explained in [15], so that the problem size could be reduced.

Currently, we are using DFS based numbering, testing for cliques, and simple search.
Though this method is very conservative, it gives the optimal solution for most of the
cases for SPEC Cpu 2006, though not for the H.264 example shown above. For this
example, this solution returns that all edges are in the same cover. Thus our current
method is not searching for a clique, which leads to loss of precision, and needs to
be improved. We are working on another heuristic approach to design a polyhedral
algorithm computing a suboptimal ECC but without loss of points-to information.

6 Conclusion

We presented the design of the graphite pass of GCC, focusing on the challenges and
novel research issues arising from this confrontation of polyhedral compilation with the
real world. Our work makes the following contributions:

– We implemented the polyhedral model on a three-address, SSA-based represen-
tation, opening interesting reuse and interaction opportunities for analyses and
optimizations in production compilers.

– We extended the polyhedral representation to capture alias relations among pointer-
based data references, with no impact on polyhedral dependence analysis and trans-
formation algorithms.

– We also extended this representation to capture scalar dependences and reductions.
– We set the framework for aggregating statements into “polyhedral basic blocks”

or splitting those blocks into smaller components, with the ability to trade expres-
siveness for compilation time.

– We motivated further research on the practical interaction between polyhedral loop
transformations and other optimizations, including parallelization and vectoriza-
tion.

6.1 Prospective work

There are two main issues that are the focus of the prospective work on automatic
parallelization:

– Heuristics/cost model for automatic parallelization. Currently, a very sim-
ple method is used to determine whether it is profitable to parallelize a certain
loop. We need a good model to determine if we should parallelize a loop consider-
ing performance reasons.

– Advanced automatic parallelization. Currently we are only able to detect
whether a loop is parallel or not. We would like to explicitly apply transformations
to increase and expose further parallelism opportunities, and we have shown that
graphite is the right setting to design such transformations.

Acknowledgments. Tobias Grosser was supported by AMD as a summer intern and
by a Google Summer of Code grant. Konrad Trifunovic was supported by IBM and
the HiPEAC FP7 European network as a summer intern. Li Feng was supported by
a Google Summer of Code grant. graphite was partially supported by the ACOTES
FP6 European project.

- 17 -

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan and
Kaufman, 2002.

2. L. O. Andersen. Program analysis and specialization for the c programming language.
Technical report, DIKU, 1994.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and
software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

4. C. Bastoul. Code generation in the polyhedral model is easier than you think. In Parallel
Architectures and Compilation Techniques (PACT’04), Antibes, France, Sept. 2004.

5. D. Berlin. Structure aliasing in GCC. In the GCC Developers’ Summit, pages 25–36,
2005. http://www.gccsummit.org/2005.

6. W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Parallel programming with
Polaris. IEEE Computer, 29(12):78–82, Dec. 1996.

7. U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic
polyhedral parallelization and locality optimization system. In ACM SIGPLAN Conf. on
Programming Languages Design and Implementation (PLDI’08), Tucson, AZ, USA, June
2008.

8. C. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing high-level loop
transformations. Technical Report 08-897, U. of Southern California, 2008.

9. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the
search for compositions of program transformations. In ACM International conference on
Supercomputing, pages 151–160, June 2005.

10. K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-
Crummey, L. Torczon, and S. K. Warren. The ParaScope parallel programming environ-
ment. Proceedings of the IEEE, 81(2):244–263, 1993.

11. P. Feautrier. Some efficient solutions to the affine scheduling problem, part II, multidi-
mensional time. Intl. J. of Parallel Programming, 21(6):389–420, Dec. 1992. See also Part
I, one dimensional time, 21(5):315–348.

12. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

13. S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam.
Semi-automatic composition of loop transformations for deep parallelism and memory
hierarchies. Intl. J. of Parallel Programming, 34(3):261–317, June 2006. Special issue on
Microgrids.

14. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Elsevier, 2nd edition,
2004.

15. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Data reduction and exact algorithms
for clique cover. J. Exp. Algorithmics, 13:2.2–2.15, 2009.

16. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE
Computer, 29(12):84–89, Dec. 1996.

17. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An
overview of the pips project. In ACM Intl. Conf. on Supercomputing (ICS’91), Cologne,
Germany, June 1991.

18. R. Johnson, D. Pearson, and K. Pingali. The program structure tree: computing control
regions in linear time. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation, pages 171–185, New York, NY,
USA, 1994. ACM.

19. KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UNIX.
http://www.hp.com/techsevers/software/kap.html.

20. W. Kelly. Optimization within a unified transformation framework. Technical Report
CS-TR-3725, University of Maryland, 1996.

- 18 -

21. W. Kelly. Optimization within a unified transformation framework. Technical Report
CS-TR-3725, Department of Computer Science, University of Maryland at College Park,
1996.

22. W. Kelly and W. Pugh. A framework for unifying reordering transformations. Technical
Report CS-TR-3193, University of Maryland, 1993.

23. W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers’95
Symp. on the frontiers of massively parallel computation, McLean, 1995.

24. W. Li and K. Pingali. A singular loop transformation framework based on non-singular
matrices. Intl. J. of Parallel Programming, 22(2):183–205, April 1994.

25. The LooPo Project - Loop parallelization in the polytope model. http://www.fmi.uni-
passau.de/loopo.

26. B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, and R. Lethin. Productivity
via automatic code generation for pgas platforms with the r-stream compiler. In AP-
GAS’09 Workshop on Asynchrony in the PGAS Programming Model, Yorktown Heights,
New York, June 2009.

27. D. Novillo. Openmp and automatic parallelization in gcc. In the GCC Developer’s summit,
June 2006.

28. M. O’Boyle. MARS: a distributed memory approach to shared memory compilation. In
Proc. Language, Compilers and Runtime Systems for Scalable Computing, Pittsburgh,
May 1998. Springer-Verlag.

29. The OpenMP API specification for parallel programming. http://openmp.org/wp/.
30. D. J. Pearce, P. H. Kelly, and C. Hankin. Efficient field-sensitive pointer analysis of C.

ACM Trans. Program. Lang. Syst., 30(1):4, 2007.
31. PLUTO: A polyhedral automatic parallelizer and locality optimizer for multicores.

http://pluto-compiler.sourceforge.net.
32. S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache. Graphite: Loop

optimizations based on the polyhedral model for GCC. In Proc. of the 4th GCC Devel-
opper’s Summit, Ottawa, Canada, June 2006.

33. S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysis with delayed abstractions.
In Intl. Conf. on High Performance Embedded Architectures and Compilers (HiPEAC’05),
number 3793 in LNCS, pages 218–232, Barcelona, Spain, Nov. 2005. Springer-Verlag.

34. L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the poly-
hedral model: Part II, multidimensional time. In ACM Conf. on Programming Language
Design and Implementation (PLDI’08), Tucson, Arizona, June 2008.

35. L. Renganarayana, U. Bondhugula, S. Derisavi, A. E. Eichenberger, and K. O’Brien.
Compact multi-dimensional kernel extraction for register tiling. In SC ’09: Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, pages
1–12, New York, NY, USA, 2009. ACM.

36. A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable autotuning
framework for computer optimization. In IPDPS’09, Rome, May 2009.

37. K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and I. Rosen. Polyhedral-model guided
loop-nest auto-vectorization. In Parallel Architectures and Compilation Techniques
(PACT’09), Raleigh, North Carolina, Sept. 2009.

38. N. Vasilache, A. Cohen, C. Bastoul, and S. Girbal. Violated dependence analysis. In ACM
Intl. Conf. on Supercomputing (ICS’06), Cairns, Australia, June 2006.

39. N. Vasilache, A. Cohen, and L.-N. Pouchet. Automatic correction of loop transformations.
In Parallel Architectures and Compilation Techniques (PACT’07), Brasov, Romania, Sept.
2007.

- 19 -

Extending GCC with a multi-grain parallelism

adaptation framework for MPSoCs

Nicolas BENOIT and Stéphane LOUISE

CEA LIST, Embedded Real Time Systems Laboratory,
Point Courrier 94, Gif-sur-Yvette, F-91191 France

{firstname.lastname}@cea.fr

Abstract. Multiprocessor-System-on-a-Chip architectures offer multi-
ple granularities of parallelism. While harnessing the lowest levels by
means of vectorization and instruction scheduling only requires local in-
formation about the code and one of the cores, coarser levels raise inter-
dependent trade-offs which necessitate a global approach.
This paper introduces Gomet: an extension to GCC which combines a
hierarchical intermediate representation of the input program and a high-
level machine description to achieve multi-grain parallelism adaptation.
Gomet builds this representation from an inter-procedural dependence
analysis, and transforms it to fit the target hardware. Then, it generates
specialized C source files to feed the native compiler of each core of the
target. Early evaluation of Gomet with simple programs show encourag-
ing results and motivate further developments.

1 Introduction

On-going research on the programming of emerging massively parallel architec-
tures [1–4] has brought new languages, new programming models and revived
interests in automatic parallelization techniques [5–7]. However, by decoupling
parallelism expression from the target architecture, a new abstraction gap be-
tween the software and the hardware has been created. To succeed in the simpli-
fication of parallel programming and achieve portability, compilation tools (with
the possible help of runtime libraries) must bridge that gap. In other words, the
high-level parallelism abstraction must be adapted (or lowered) to the hardware
features available.

Multiprocessor-System-on-a-Chip architectures (MPSoCs) support multiple
levels of parallelism and offer specialized processing units [1, 3]. Consequently,
the possible mappings of a program to a given architecture vary in different per-
formance metrics: execution time, memory footprint, communication volume,
energy consumption. At the finest levels of parallelism (SIMD, MIMD), the
inter-dependent trade-offs raised can be solved locally, and are supported by
most compilers. On the other side, the efficient handling of coarser granulari-
ties requires in the compilation flow a confrontation between the whole program
and the target architecture. Figure 1 provides an illustration of such holistic
parallelism adaptation in the compilation flow.

- 20 -

Parallel

Language

Compiler

Parallelism

Back-end

Parallel

Language

Source Files

Program

Representation

With All

Parallelism

Exposed

Parallel

Machine AB

Description

Machine A

Description

.C

Source Files

Source Files

Machine B

Compiler

Machine A

Compiler

Merge

Tool

Parallel

Executable

Machine A

Code

Machine B

Code

2.Parallelism adaptation1.Parallelism expression 3.Machine code generation

Machine B

Description

Feedback

Loop

Sequential

Language

Source Files

Parallelizer

Fig. 1. Compilation flow integrating parallelism adaptation.

The first step consists in capturing as much parallelism as possible in the
input program. This can be achieved either with an automatic parallelization
tool or by providing specific language constructs to the programmer. During
the second step, a parallelism back-end adapts the exposed parallelism to the
physical execution resources of the target architecture. Finally, for each type of
execution resource, a set of separate source files is generated and processed with
the native compilation tools (step 3). In an iterative compilation scheme, the
latter can guide the parallelism back-end by providing feedbacks.

Our research work investigates the coupling of the parallelism back-end with
native compilers for MPSoCs. Among others, we are interested in the support
of hardware mechanisms such as weak synchronization [8] between processing
units, and the automatic accounting of heterogeneous resources.

To experiment with parallelism adaptation, we are developing a new ex-
tension to GCC called Gomet. Its front-end builds a hierarchical intermediate
representation of the input program. Its back-end confronts the obtained repre-
sentation with a high-level machine description and generates specialized parallel
C source files.

This paper describes the general architecture of Gomet and is organized
as follow: section 2 presents the related work, section 3 details the front-end
internals, section 4 presents the parallelism back-end code generator, and section
5 shows the results obtained as the development reaches its first milestone.

2 Related Work

Harnessing the massive parallelism offered by current and forthcoming archi-
tectures is a long-term and very active field of research. Among the numerous
propositions to enhance the support of parallelism in the compilation flow [9–14],
this section presents the work which share the most similarities with Gomet.

- 21 -

2.1 Outside GCC

The OSCAR Compiler [9] integrates a multi-grain parallelizer based on the
macro-dataflow [15] program representation. The macro-dataflow is a directed
hierarchical graph which describes macro-tasks and their data dependencies at
various levels of granularity: subroutine calls, repetitive blocks and statements.
The compiler schedules the graph on the target architecture and uses a high
level API [16] to abstract hardware mechanisms. This API comprises energy
consumption controls and a subset of OpenMP [17]. After its translation by a
target dedicated back-end, the native compiler can produce the final executable.

The ACOTES [10] research project aims at providing programmers with
a stream-oriented programming environment. It defines a set of directives ex-
tending OpenMP in order to abstract stream management. Those directives
are processed with the Mercurium source-to-source compiler [18] which replaces
directives with calls to a dedicated library. It relies on a high-level machine de-
scription and a simulator to schedule the streams on the available resources and
operate transformations such as task fusion. The output of the source-to-source
compiler is processed by GCC in order to produce the final program.

Sage++ [19] is used to pre-process extended C++ with data-parallel con-
structs (pC++). It generates standard C++ code later compiled by the native
compiler and linked to a machine-specific runtime system.

The Stream Virtual Machine [20] is a high-level machine description which
captures the main features of stream processors. It comprises a machine model
and a high-level API, which abstract computation and data partitioning, com-
munication and synchronization.

The reader may find case studies of adaptation of stream programs to existing
architectures in [21–23].

2.2 Inside GCC

Current versions of GCC support OpenMP 3.0 directives through libgomp. It
is notably exploited by the automatic parallelization pass autopar which adds
appropriate Gimple OMP statements (and cost estimation) each time the loop
analysis detects a parallel loop. Towards supporting the pipeline parallel con-
struct, Pop et al. recently presented automatic streamization [24].

Gomet experiments the integration of a hierarchical program representation
into GCC and the generation of parallel C source code from it. This hierarchical
representation allows the adaptation of the program at multiple levels of granu-
larity. The transformation is driven by a generic process tuned by target-specific
cost-models and program transformations.

3 Generation of a Hierarchical Intermediate

Representation

This section introduces Gomet’s front-end and how it generates a hierarchical
intermediate representation of the input program, referred as Kimble, and cap-

- 22 -

tures as much information as possible about the available parallelism. Figure 2
shows where it is inserted in GCC flow.

Gomet Front-end
(builds annotated hierarchical dependence graph)

GCC Front-end & Middle-end
(may use LTO to support multiple input source files)

Source

File(s)

Gimple I.R.
Kimble I.R.

Inter-Procedural

Data Dependence

Analysis

High-level Passes

(SSA, Graphite, ...)

Link Time

Optimization
Front-end Code characterization

Fig. 2. Insertion of Gomet’s front-end into GCC flow.

Currently, Gomet is implemented as one of the -O1 optimization passes
of passes.c. It requires the -fgomet command line switch to be activated. For
each function present in a source file, the optimization passes sequence is inter-
rupted before lowering Gimple I.R. to RTL. When the last function definition is
reached, Gomet enters its processing chain. Among other high-level GCC opti-
mization passes, Gomet benefits from the Static-Single-Assignment (SSA) form
and Graphite loop transformations. The first one simplifies scalar data depen-
dences by preventing multiple assignments of the same variable. The second
one reduces the number of loop-carried dependences. Therefore, Gomet assumes
that parallelism at the statement and loop levels is exposed and requires no
further transformations. In order to cover coarser granularities of parallelism, it
integrates an inter-procedural data-dependence analysis.

3.1 Inter-Procedural Data-Dependence Analysis

To push parallelism adaptation to its limits, the data-dependence analysis aims
at capturing all the available parallelism in the input program. This is achieved
by collecting exhaustively the memory references triggered during an emulation
of its execution.

To be correct, the analysis assumes that the program’s call graph contains
no cycle and that all loop bounds and data are defined. Undefined functions are
tolerated to the condition they use no data outside their own scope, this holds
for arithmetic functions such as sin(), sqrt(), etc. Though restrictive, those as-
sumptions are acceptable for this prototyping work. Moreover, they fit in the
deterministic parallelism context of embedded systems which our research ad-
dresses.

Memory Access Formula. Prior to the analysis, a program parsing pass
builds a virtual memory address space and associates a unique address to each
data declared. Then, for each data access, a formula that will allow to compute
the corresponding memory address can be established. The formulas are symbolic
and contain unknown values at the time of their building. Currently, formulas
support referencing, dereferencing, array indexing and composition (for example

- 23 -

structure fields accesses). Each formula is coupled with the number of bytes the
access reads or writes.

Program Tree. The analysis abstracts the program as a tree, which can contain
five types of nodes: function call, loop, iteration, basic-block and statement. The
root of the tree is the root of the call-graph (for example the main() function),
it corresponds to the coarsest level of granularity. The leaves are statements,
which represent the finest level of granularity.

Processing. The analysis processes the tree depth-first, following the path of
the execution flow of the program. In other words, it reaches the finest level of
granularity before processing coarser levels. It emulates the behavior of func-
tion calls, loops and simple arithmetic statements, as if the code was partially
executed. When the statement level of a branch is reached, memory accesses
formulas are evaluated. Each time the analysis finishes the processing of the
children of a node, it builds a summary of their memory accesses and a de-
pendence graph between them. A memory accesses summary classifies accessed
memory addresses into one of the three following sets: Read-Only, Read-Write,
Write-First [25].

Current Implementation. The proposed analysis exhaustively computes all
memory references in the input program and tests if they intersect. It is a simple
and reliable approach, which captures all exposed parallelism. Nevertheless, its
duration depends on the input code, requiring hours of analysis for large itera-
tion domains. For example, the initialization and the product of two 256 × 256
matrices takes about 20 minutes on an Intel Xeon clocked at 3 GHz. On the
other hand, memory usage is kept low by freeing memory accesses summaries
as soon as they have been aggregated at a coarser level of granularity. This may
allow to duplicate the contexts of large loops in order to analyze multiple itera-
tions in parallel.
In the future, the analysis could be hybridized with traditional dependency tests
or polyhedral approaches to detach its complexity from the input code. Existing
components of GCC (Graphite, OpenMP support, auto-vectorization) can help
to achieve this goal.

3.2 Gimple Encapsulation with Kimble

In order to store the information collected during the inter-procedural analysis,
the Gimple intermediate representation is encapsulated into Kimble, a hierar-
chical structure of dependence graphs. Kimble wraps Gimple at the statement
level, and adds containers that map nested constructs with coarser granularities.
Containers at the same level form a DAG where edges describe data-dependence
relationships. Other examples of hierarchical dependence graphs can be found
in [26–29, 15].

- 24 -

Our intermediate representation follows an organization similar to [15], but
defines six types of nodes to remain closer to the level of the C source code
that will be generated. Four of those node types come from the program tree
built during the dependence analysis. Loops can be annotated with the type of
parallelism they support: undividable, map (all iterations are independent) or
reduce (iterations expose a reduction dependence scheme).

Nodes = {Function, Loop, Region, Cluster, Statement, Call}

TreeN → (TreeN)
| TreeN ‖ TreeN

| TreeN ; TreeN

| n ∈ N

9

>

>

=

>

>

;

Dependence graph expression

Function → Function(Tree{Loop,Region})
Loop → Loop(Tree{Loop,Region})
Region → Region(Tree{Cluster,Statement,Call})
Call → Call(Tree{Function})

9

>

>

=

>

>

;

Hierarchy expression

Fig. 3. Grammar ruling Kimble structure.

Figure 3 gives an overview of the grammar ruling Kimble structure. Node
types are given in the Nodes set. Nodes at the same level are linked using ‖ and ;
operations which respectively establish parallel and sequential relationships and
express dependence. Then, legal hierarchical (a.k.a. nested) constructs can be
read as following : “A function contains a dependence graph of Loop and Region

nodes”. We may mention that Region and Cluster nodes correspond respectively
to a basic-block and an undividable (possibly empty) group of statements.

As the grammar ruling Kimble suggests, the parallelism information ex-
pressed directly map to C constructs. This eases parallelism adaptation as this
information is conserved and transparently updated during program transfor-
mation.

3.3 Example

Kimble representation is illustrated with a function extracted from the x264
[30] H.264 video encoder: sub16x16 dct(). This function performs a DCT on the
difference of two 16 × 16 matrices.

Figure 4 is a simplified Kimble representation of this function, the SSA form
was reduced in order to limit the graph size. Arrows indicate a dependence
relationship, while dotted edges represent a hierarchical link, also referred as
nesting relationship.

Within sub16x16 dct(), the representation highlights the independence of four
calls to sub8x8 dct(). Itself embeds four independent calls to sub4x4 dct(), which

- 25 -

void sub16x16_dct (int16_t *, uint8_t *, uint8_t *)

region

cluster //1//

statement //4//

sub8x8_dct (dct, p1, p2);
statement //4//

sub8x8_dct (dct+128, p1+8, p2+8);
statement //4//

sub8x8_dct (dct+256, p1+128, p2+264);
statement //4//

sub8x8_dct (dct+384, p1+136, p2+264);

void sub8x8_dct (int16_t *, uint8_t *, uint8_t *)statement //1//

return;

region

cluster //1//

statement //4//

sub4x4_dct (dct, p1, p2);
statement //4//

sub4x4_dct (dct+32, p1+4, p2+4);
statement //4//

sub4x4_dct (dct+64, p1+64, p2+128);
statement //4//

sub4x4_dct (dct+96, p1+68, p2+132);

void sub4x4_dct (int16_t *, uint8_t *, uint8_t *)statement //1//

return;

region

statement //1//

pixel_sub_wxh (d, 4, p1, 16, p2, 32);
loop {parallel}

for (i=0; i<=3; i=i+1)

void pixel_sub_wxh (int16_t *, int, uint8_t *, int, uint8_t *, int)

loop {parallel}

for (y=0; i_size>y; y=y+1)

region

statement //1//

return;

region

cluster //1//
loop {parallel}

for (x=0; i_size>x; x=x+1)

statement //2//

p1 = p1+(y*i_p1);
statement //2//

p2 = p2+(y*i_p2);region

statement //1//

*(diff+((x+(y*i_size))*2)) = *(p1+x) - *(p2+x);

region
loop {parallel}

for (i=0; i<=3; i=i+1)

cluster //1//

statement //4//

D_2843 = d[i][0];
statement //4//

D_2845 = d[i][3];
statement //4//

D_2847 = d[i][1];
statement //4//

D_2849 = d[i][2];

statement //4//

s03 = D_2845 + D_2843;
statement //4//

d03 = D_2843 - D_2845;

statement //4//

tmp[0][i] = s12 + s03;
statement //4//

tmp[2][i] = s03 - s12;

statement //4//

s12 = D_2849 + D_2847;

statement //4//

tmp[1][i] = (d03*2) + d12;
statement //4//

tmp[3][i] = d03 - (2*d12);

statement //4//

d12 = D_2847 - D_2849;

regionregion

cluster //1//

statement //4//

D_2867 = tmp[i][0];
statement //4//

D_2869 = tmp[i][3];
statement //4//

D_2871 = tmp[i][1];
statement //4//

D_2873 = tmp[i][2];

statement //4//

s03 = D_2869 + D_2867;
statement //4//

d03 = D_2867 - D_2869;

statement //4//

dct[i][0] = s12 + s03;
statement //4//

dct[i][2] = s03 - s12;

statement //4//

s12 = D_2873 + D_2871;

statement //4//

dct[i][1] = (d03*2) + d12;
statement //4//

dct[i][3] = d03 - (2*d12);

statement //4//

d12 = D_2871 - D_2873;

statement //1//

return;

independent subroutine calls

independent subroutine calls

sequence of

parallel loops

nested

parallel

loops
statement-level

dependences

function loop region cluster statement dependence nesting

Fig. 4. Simplified Kimble representation of the sub16x16 dct() function in x264.

- 26 -

contains a reference to pixel sub wxh() and two successive loops. Between braces,
the loops are tagged as being parallel. Between double slashes, the statements
are annotated with their concurrency level metric, collected during code charac-
terization.

3.4 Code Characterization

In order to hint the parallelism mapping decisions, a few static information are
collected and decorate the nodes of the Kimble tree. It includes for example the
number of integer operations, the volume of data written, etc.

Another metric used for code characterization is the concurrency level sup-
ported by each node. It corresponds to the minimum number of nodes that can
be executed concurrently at the same hierarchy level. It is computed using the
dependence graph at each level of hierarchy within the Kimble representation.

In the future, characterization should take advantage of the information al-
ready gathered and computed by GCC itself. It could also employ a communica-
tion interface with the native compiler or other static analysis tools, and exploit
profiling data.

4 Program Transformation and Code Generation

This section describes the back-end of Gomet: how it adapts the parallelism
exposed in the Kimble representation and how it outputs C source code. Figure
5 shows the flow in which it operates.

Kimble

Transformations

Target

Description

.C

Executable

File

Kimble I.R.

Gomet Back-end
(use of cost-models, profiling data)

C Code

Generation

Parallelism

Adaptation

Native

Compilation

Tools

A B

MPSoC

Specialized

C Source Files

Fig. 5. Inputs and outputs of Gomet’s back-end.

The Kimble representation is iteratively transformed to map parallel branches
of the tree to the available resources of the architecture. When this process is
done, the tree is walked to generate C source code.

4.1 Kimble Transformations

The Kimble representation can be simplified and modified by means of four
transformations:

- 27 -

Pruning. The pruning transformation removes empty nodes which are notably
added during the systematic construction of the representation.

Aggregation. The aggregation transformation encapsulates chains of depen-
dent statements into clusters.

Encapsulation. Also known as outlining (opposed to inlining), the encapsu-
lation transformation detaches a branch from its context and inserts it into a
newly created function. The variables shared between the detached branch and
its environment are either put into a structure or passed as the function pa-
rameters. Besides isolating parallel tasks, this transformation allows to factorize
code, addressing MPSoCs constrainted environments.

Loop Fission. The loop fission transformation creates an outer loop which re-
defines the bounds of the transformed loop so that multiple sub-domains can be
processed independently. Currently, this transformation requires all iterations to
be independent (map parallelism). It allows SPMD (Single-Program Multiple-
Data) parallelism.

4.2 Adaptation to the Target Architecture

The adaptation process consists in coupling, through a dedicated API, a generic
tree traversal and transformation procedure with a target architecture descrip-
tion. The latter is selected when invoking GCC+Gomet with the command line
switch -fgomet-target.

Target Architecture Description. A target architecture description imple-
ments a set of callbacks to be used by the generic tree traversal procedure. The
first kind of callbacks implements cost models: computations, communications,
energy, etc. They are fed with the code characteristics gathered at the time of
the Kimble representation building. The second kind of callbacks implements
Kimble modifiers for parallelism implementation. For example, it may transform
and generate bits of Kimble to insert calls to dedicated fork/join intrinsics, vec-
tor instructions intrinsics, communication primitives, etc. In this perspective, the
target description can reference external libraries. The last kind of callbacks con-
cerns the state of the machine, for example it updates the number of remaining
free execution units.

Tree Traversal and Transformation. The traversal begins at the coarsest
level of granularity, i.e. the entry point of the program, and implements the node
decomposition technique described in [29]. For each set of concurrent nodes, a
set of cost models is used to determine if offloading them to one of the available
execution resource would be beneficial. If not enough concurrency is exposed,

- 28 -

the algorithm considers the slicing of parallel loops. If there is still not enough
concurrency, the tree traversal dives to consider a finer level of granularity. When
execution resources are exhausted or the offloading is impossible, the traversal
quits the current level of granularity and resumes its work on the next set of
concurrent nodes at the higher level.

4.3 C Source Code Output

Once the adaptation process is finished, the Kimble tree of each function is
walked in order to generate the corresponding C source code.

GCC and Gimple tree codes are associated to their C language idioms, and
SSA temporary variables are conserved and declared appropriately. Then, when
processing a C program, statements can be straightforwardly unparsed from their
Kimble representation. Loops are encapsulated using the usual C construct for,
while other control flow constructs are restored using if and goto statements.

Other input languages were not extensively tested, as the purpose of Gomet is
not to become a language conversion tool. However, converting Fortran canonical
types and loops seems to be sufficient to support a subset of that language.

Global variables, types and structures defined in the input program are re-
stored by inserting their definition at the top of the generated file. If the target
architecture uses a runtime library, for example Pthreads, appropriate headers
are also included.

Figure 6 is a shortened sample of the code generated for the sub4x4 dct()
function in x264. It shows the SSA form of statements and reconstituted loop
constructs.

5 Experiments

In this section, the results of the processing of four simple programs with
GCC+Gomet are presented. Though it targets MPSoCs, the first milestone of
Gomet does not include a machine description for such architecture, the C source
code generated uses a Pthreads execution model, as proof of concept.
Gomet was built within GCC trunk revision 153048, while the reference exe-
cutable and the output of GCC+Gomet were compiled with GCC 4.3.2. The
target machine is a quad-core Intel E5320 clocked at 1.86 GHz with 4 MB of
L2 cache. It has 4 GB RAM and runs Debian GNU/Linux with a 2.6.26 kernel.
In order to limit the duration of the data-dependence analysis, the problem size
was reduced and restored by hand in the generated code. Moreover, the repe-
tition of the workload was manually forced so that it was large enough for the
OS scheduler to allocate a physical core. Figure 7 shows the speed-up achieved
when targeting one, two and four cores. For comparison purpose, the figure also
shows the speed-up obtained after the program has been manually parallelized
with OpenMP pragmas.
Program A implements the sub16x16 dct() function presented in 3.3, Gomet

parallelized the calls to the subroutine sub8x8 dct(). Program B initializes three

- 29 -

1 void sub4x4_dct (int16_t *dct, uint8_t *p1, uint8_t *p2)
2 {
3 int16_t D_2820;
4 int D_2821;
5 [...] /* more local declarations, including SSA variables */
6 int16_t d[4][4];
7 int d12;
8

9 goto R_13; /* control flow restitution with gotos and labels */
10 R_13:
11 d_1 = (int16_t *) &(d);
12 pixel_sub_wxh (d_1, 4, p1, 16, p2, 32);
13 goto L_2;
14 L_2:
15 for (i=0; i<=3; i=i+1) /* reconstituted loop construct */
16 {
17 goto R_11;
18 R_11:
19 D_2820 = d[i][0];
20 D_2821 = (int) D_2820;
21 D_2822 = d[i][3];
22 D_2823 = (int) D_2822;
23 s03 = D_2823 + D_2821;
24 [...] /* more SSA statements */
25 tmp[3][i] = D_2843;
26 goto R_12;
27 R_12:
28 goto L_2_;
29 L_2_:
30 ;
31 }
32 goto R_14;
33 L_1:
34 for (i=0; i<=3; i=i+1) /* reconstituted loop construct */
35 {
36 goto R_9;
37 R_9:
38 D_2844 = tmp[i][0];
39 [...] /* more SSA statements */
40 D_2854 = (int16_t *) ((void *)dct + D_2853);
41 D_2854[2] = D_2838;
42 goto R_10;
43 R_10:
44 goto L_1_;
45 L_1_:
46 ;
47 }
48 goto R_15;
49 R_15:
50 return;
51 R_14:
52 goto L_1;
53 }

Fig. 6. Shortened sample of code generated by GCC+Gomet.

- 30 -

 0

 1

 2

 3

 4

 5

A. sub16x16-dct B. matmul C. sobel D. filterbank D’. filterbank fixed

s
p

e
e

d
-u

p
 f

a
c
to

r

GCC+Gomet (one core) GCC+Gomet (two cores) GCC+Gomet (four cores) GCC+OpenMP by hand

Fig. 7. Speed-up measurement of four programs processed with GCC+Gomet.

matrices A, B, C, and computes C = C + AB. The initialization of each matrix
is performed in parallel and the outer loop of the matrix product is parallelized.
Program C is a Sobel edge detection image filter. The horizontal and vertical
gradients are computed in parallel, and on the 4 cores variant, their respective
outer loops are parallelized. The outer loop of the magnitude computation is par-
allelized. Program D comes from the Stream-It [5] benchmark suite, it performs
multi-rate signal processing. Gomet parallelized the outer loop of the processing
to filter channels in parallel.
Those results show the ability of Gomet to generate valid parallel C source code,
offering equivalent speed-ups to the ones obtained manually with OpenMP prag-
mas. However, they also suggest that the form of the code generated by Gomet
affects the optimization passes of the native compiler. While little benefit can
be measured for programs A and C, program D is negatively impacted. Figure 8

1 for (k=0; (k<N_col)&(k<=j); ++k)
2 Vect_H[i][j] += H[i][k]*r[j-k];

A. Original code

1 Vect_H_I_I_lsm_2 = Vect_H[i][j];
2 D_2798 = 1;
3 for (k=0; D_2798!=0;)
4 {
5 D_2785 = Vect_H_I_I_lsm_2;
6 D_2788 = D_2787[k];
7 D_2789 = j - k;
8 D_2790 = (long unsigned int) D_2789;
9 D_2791 = D_2790 * sizeof(double);

10 D_2792 = (double *) ((void *)r + D_2791);
11 D_2793 = *(D_2792);
12 D_2794 = D_2788 * D_2793;
13 D_2795 = D_2785 + D_2794;
14 Vect_H_I_I_lsm_2 = D_2795;
15 k = k + 1;
16 D_2796 = k < N_col;
17 D_2797 = k <= j;
18 D_2798 = D_2796 && D_2797;
19 }
20 Vect_H[i][j] = Vect_H_I_I_lsm_2;

B. GCC+Gomet generated code

Fig. 8. Inner loop of a convolution code in Filterbank.

compares the original code of a convolution in the D program to the generated
one, it shows two problems met with GCC 4.3.2 as the native compiler. First,

- 31 -

the exit condition of the loop is computed in the loop body (lines 16, 17, 18)
and stored into a SSA temporary variable, making it difficult for GCC 4.3.2 to
optimize the conditional jumps sequence. Second, the Vect H I I lsm 2 value is
duplicated into a SSA temporary variable (line 5), preventing GCC 4.3.2 from
optimizing the accumulation (lines 13 and 14).
As figure 7 shows, the generated code for program D performs as well as the
OpenMP code if manually fixed (by removing the mentioned SSA variables).
In a future version of the code generator, an assignment chain compaction pass
may be experimented to address this issue and explore the interaction between
Gomet and the native compiler’s optimizations.

6 Conclusion and Future Work

The mapping of parallel computations to MPSoCs raises complex inter-dependent
trade-offs which require automated code generation tools. This paper introduced
Gomet, an extension to GCC which enables the generation of parallelized C
source code based on a hierarchical intermediate representation of the input
program. This representation can express multiple granularities of parallelism,
and is transformed to exploit the target architecture resources. Early experi-
ments show encouraging results and validate the code generation approach used
in Gomet.

The first milestone of the project intended to set up an effective parallelism
adapation chain. The next milestone will focus on the support of more complex
machine descriptions, distributed memory architectures and load balancing.

Besides, there are many other directions for future develoments in Gomet.
First, the exhaustive dependence analysis could be hybridized with faster ap-
proaches when the code exposes regular patterns such as linear iteration spaces.
Second, the machine description could interface Gomet with the native compil-
ers of targeted cores, taking advantage of their detailed knowledge of instruction
sets. Third, supporting the Link Time Optimization of the forthcoming GCC
4.5 would enable Gomet to deal with multiple input source files. Finally, in ad-
dition to C, the support of additional input languages and their features could
be investigated.

7 Acknowledgements

The authors would like to thank Professor William Jalby for its insightful com-
ments about this work.

References

1. Gschwind, M. et al.: Synergistic Processing in Cell’s Multicore Architecture. IEEE
MICRO 26(2) (2006)

2. Wentzlaff, D. et al.: On-Chip Interconnection Architecture of the Tile Processor.
IEEE Micro 27(5) (2007)

- 32 -

3. Duller, A., Panesar, G., Towner, D.: Parallel Processing: the picoChip Way. Com-
municating Process Architectures (2003)

4. Greiner, A.: Tsar : a scalable, shared memory, many-cores architecture with global
cache coherence. In: 9th Int. Forum on Embedded MPSoC and Multicore. (2009)

5. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A Language for Stream-
ing Applications. In: Computational Complexity. (2002)

6. Khronos OpenCL Working Group: The OpenCL Specification (Version 1.0) (2008)
7. Rus, S., Rauchwerger, L., Hoeflinger, J.: Hybrid analysis: static & dynamic memory

reference analysis. International Journal of Parallel Programming 31(4) (2003)
8. Calcado, F., Louise, S., David, V., Merigot, A.: Efficient use of processing cores

on heterogeneous multicore architecture. In: CISIS ’09. (2009)
9. Kimura, K. et al.: Multigrain Parallel Processing on Compiler Cooperative Chip

Multiprocessor. (2005)
10. ACOTES: Advanced Compiler Technologies for Embedded Streaming:

http://www.hitech-projects.com/euprojects/acotes/
11. Blume, W. et al.: Parallel Programming with Polaris. Computer 29(12) (1996)
12. Polychronopoulos, C. et al.: Parafrase-2: an environment for parallelizing, parti-

tioning, synchronizing, and scheduling programs on multiprocessors. International
Journal of High Speed Computing 1(1) (1989)

13. Irigoin, F., Triolet, R.: Semantical interprocedural parallelization: An overview of
the PIPS project. In: ICS ’91, ACM New York, NY, USA (1991)

14. Hall, Mary W. et al. : Interprocedural parallelization analysis in SUIF. ACM
TOPLAS 27(4) (2005)

15. Okamoto, M. et al.: Hierarchical macro-dataflow computation scheme. In: IEEE
PACRIM ’95. (1995)

16. Miyamoto, T. et al.: Parallelization with Automatic Parallelizing Compiler Gen-
erating Consumer Electronics Multicore API. In: IEEE APDCT ’08. (2008)

17. OpenMP Architectural Review Board: OpenMP 3.0 specification (2008)
18. The Mercurium compiler: http://nanos.ac.upc.edu/content/mercurium-compiler
19. Bodin F. et al.: Sage++: An Object-Oriented Toolkit and Class Library for Build-

ing Fortran and C++ Restructuring Tools. In: OONSKI ’94. (1994)
20. Labonte, F. et al.: The stream virtual machine. In: PACT ’04, IEEE (2004)
21. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. ASPLOS ’06 (2006) 151–162
22. Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on mul-

ticore platforms. PLDI ’08 (2008)
23. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software Pipelined Execution

of Stream Programs on GPUs. In: CGO ’09, IEEE Computer Society (2009)
24. Pop, A., Pop, S., Sjödin, J.: Automatic Streamization in GCC. In: 2009 GCC

Developer’s Summit. (2009)
25. Hoeflinger, J.: Interprocedural Parallelization Using Memory Classification Anal-

ysis. PhD thesis, University of Illinois at Urbana-Champaign (1998)
26. Warren, J.: A hierarchical basis for reordering transformations. In: POPL ’84,

ACM (1984)
27. Sarkar, V., Hennessy, J.: Partitioning parallel programs for macro-dataflow. In:

ACM LFP ’86, ACM (1986)
28. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3) (1987)
29. Hoang, P., Rabaey, J.: Scheduling of DSP Programs onto Multiprocessors for

Maximum Throughput. IEEE Transactions on Signal Processing 41(6) (1993)
30. x264 - a free h264/avc encoder: http://www.videolan.org/developers/x264.html

- 33 -

A case study: optimizing GCC on ARM for
performance of libevas rasterization library

Dmitry Melnik1, Andrey Belevantsev1, Dmitry Plotnikov1, and
Semun Lee2

1 Institute for System Programming, Russian Academy of Sciences
{dm,abel,dplotnikov}@ispras.ru

2 Samsung Corp.
semun.lee@samsung.com

Abstract. This paper reports on the work for optimizing GCC on ARM
to improve performance of libevas rasterization library. We used manual
profiling and analysis as well as ACOVEA [3] compiler options tuning
tool to identify weak places and tune GCC optimization parameters. We
identified a number of deficiencies in GCC optimizations with libevas on
ARM, including GCSE, register allocation, autovectorization and loop
prefetching, and proposed solutions to them, that altogether brought
15.78% average performance increase, and with up to 119% increase on
certain tests, as measured with customized expedite benchmark. These
results show that tuning existing GCC optimizations for specific platform
and application may provide significant performance boost, comparable
to that of developing a new compiler optimization.

1 Introduction

GCC is designed to be a multiplatform compiler. It also contains dozens of opti-
mization passes that are parameterized in such a way that any target platform
code can influence their decisions. Given the complexity of GCC, usually there
is a room for improvement if you need to tune GCC for one particular target,
while not paying attention to performance on other targets. The improvement
may come from several sources. First, since most of the tuning happens for
x86 and x86-64 architectures, there may be code generation deficiencies for a
less popular target. A fix for them usually requires adding new instruction pat-
terns or peephole optimizations to the backend, or adjusting target-dependent
costs. For example, GCC inlining pass has internal constants specifying costs of
function calls, prefetching pass has parameters that control cache metrics, etc.
Second, machine-independent optimizations may not be tuned for a given target,
meaning that their default behavior should be changed. For example, register
allocator and/or inlining may use different limits on embedded targets than on
general targets. Finally, a new target-independent feature could be implemented
to take into account certain specific features of the target. For example, to make
advantage of speculation feature of Intel Itanium, we have implemented its sup-
port in the instruction scheduler. This kind of improvements may take much
time and resources.

- 34 -

In this work, our primary optimization target was ARM Cortex-A8 [1] ar-
chitecture, including its NEON vector unit. In the paper we show a number of
deficiencies that we found in GCC optimizations, and that are specific either
to Cortex-A8 architecture or ARM platform in general. These optimizations in-
clude GCSE, prefetching, and autovectorization for NEON. We have proposed
solutions to the problems found which altogether brought 15.78% average per-
formance increase, with up to 119% gain on certain tests (as measured with
customized expedite benchmark described in Section 2). We also show that
using automatic compiler option tuning tools like ACOVEA may facilitate iden-
tification of those optimizations that need improvement as well as determining
optimal optimization parameter values.

Rest of the paper is organized as follows. In Section 2 we give overview on
libevas rasterization library, expedite benchmark test suite, ACOVEA tool
and the environment we have used. In Section 3 we describe GCC optimiza-
tions we have analyzed and the improvements we made to them. In Section 4
we present the performance results of our optimizations and tuning. Section 6
outlines areas for the future work, and Section 6 concludes.

2 Test Application and Environment

As our primary performance target for GCC optimizations we have chosen
libevas. It is a part of EFL (Enlightment Foundation Libraries) [2], which are
base libraries for E window manager as well as other applications. This multi-
platform library contains various routines for fast rasterization and processing
image data, such as blending, scaling, clipping images, drawing polygons, etc. To
measure libevas performance, we used a modified version of expedite bench-
mark suite, available in EFL repository. It was customized to improve results
precision and speed, so it can provide results with variance less than 0.5% in
1-2 minutes test run time. The improvements to precision include adding few
iterations to each test that are executed before time measurement is started so
to exclude time required to fill cache from the result; a median filter is applied to
evaluate final fps value for each benchmark among several runs. Better precision
allowed us to significantly decrease the minimal number of iterations required for
each test to obtain stable results. Also we have excluded from the original test
set benchmarks with similar profiles and those with volatile results. To compute
composite benchmark result value geometric mean is used. These improvements
altogether allowed us to use this benchmark suite with automatic tuning tools
as a complement to manual tuning.

To aid manual tuning, we used ACOVEA [3] automatic tuning tool. It aims
to find a combination of options and parameters that provide best performance
on a given benchmark using genetic algorithm [4, 5]. We have adapted ACOVEA
to work in a cross environment. The changes include added capability to cross-
compile benchmarks on x86 machine, transfer binaries to ARM testboard, execute
them, and transfer the resulting fps value back to x86 host. Then, ACOVEA
core cross-breeds GCC options from different runs according to performance

- 35 -

these options provide: the better fps the certain options combination achieves,
the greater chance it has to reproduce.

Initially we ran ACOVEA tuning with a set of GCC flags that are enabled by
default by -O3 optimization level, plus -fprefetch-loop-arrays flag. It took
about 4 days to complete with the following ACOVEA parameters: 20 genera-
tions, 3 populations, and 60 species in a population. This tuning run have shown
that the greatest effect on performance has -fno-gcse option, which disables
Global Common Subexpression (GCSE) optimization. This positive effect was
observed on 44 out of 45 tests, and it didn’t depend from other options specified
along with -fno-gcse, or an input data. We give analysis of the GCSE optimiza-
tion problem in Section 3.1. Other option combinations found by ACOVEA we
have analyzed didn’t tend to show consistent performance improvement, e.g. sim-
ply enabling -fprefetch-loop-arrays without tuning its parameters affected
tests controversially, improving some by up to 10-15% while slowing down others
as much as 25%.

Since there are more than 100 numeric parameters in GCC, each with its
own integer value range, it is impractical to tune them all at once, so we selected
few optimizations for detailed tuning of their parameters with ACOVEA. These
optimizations are inlining, loop unrolling, register allocator and loop prefetching.
We discuss results of this tuning in Sections 3.1–3.4, dedicated to corresponding
optimizations.

In our work we used GCC 4.4.1 release branch as the base compiler.

3 GCC optimizations

In this section we discuss problems found in GCC optimizations and propose
solutions for them.

3.1 GCSE

We have analyzed assembly code of libevas and identified a common deficiency
in the way GCC deals with long immediate constants on ARM. On ARM, due
to architecture constraints, a constant can be used as an immediate instruction
operand if and only if it can be represented in the form CONST 32 = CONST 8
<< (2 * N), where CONST 8 is an 8-bit constant, and 0 ≤ N < 16. If a constant
doesn’t comply with this constraint, the instruction can’t use it as an immedi-
ate value, but should either preload it into a register or split original operation.
Figure 1 shows an example of such constant splitting. Let’s say we need the
2nd and 4th byte components from 4-byte integer variable b (this access pattern
is very common in libevas blend routines). The C code to access appropriate
components with a bit mask (at the left) is translated into two bic instructions
(at the right). Assuming that in original application these instructions are lo-
cated inside loop, in this case better solution would be store this constant into a
register outside a loop and then use just one and instruction with that register

- 36 -

int a, b;

a = b & 0x00ff00ff;

(a) C code

ldr r3, [fp, #-8] ; load b

bic r3, r3, #-16777216 ; r3 = r3 & ~0xff000000

bic r3, r3, #65280 ; r3 = r3 & ~0x0000ff00

str r3, [fp, #-12] ; store a

(b) ARM assembly code generated by GCSE pass

Fig. 1. Splitting long ARM constants

as an operand instead of two bic instructions with immediate constants inside
the loop.

We found that the main reason for generating such inefficient code is that dur-
ing global common subexpression elimination (GCSE [6, 7]) optimization pass
GCC doesn’t consider ARM architecture specifics regarding immediate value
representation in instruction code, assuming that constant propagation is al-
ways profitable, which is not true when propagating constants inside loops on
ARM. There are three GCC passes that are involved in this problem: pass gcse,
pass rtl move loop invariants, pass split all insns (by default executed
in this order). At GCSE pass, two instructions reg1 = const and reg2 = reg2
& reg1 are merged into reg2 = reg2 & const. At this stage, the compiler
doesn’t know whether const is a valid immediate constant for ARM or it
needs splitting into two separate instructions and proceeds with merge any-
way. Then, at move loop invariants pass, it wouldn’t have any invariant to
move, since at this point it is already an immediate value in instruction. Then,
split all insns is run, which adds an extra instruction into the loop body.
Changing the order of passes (doing loop invariant motion after split) doesn’t
help since after split it isn’t a loop invariant any more because of data depen-
dencies.

The problem can be worked around by disabling GCSE completely, but this
isn’t an appropriate solution, since in this case optimization opportunities can
be missed. So we developed a solution for ”conservative” GCSE, which takes
into account ARM immediate value representation specifics. In order for loop
invariant to work, we moved loop invariant code motion pass before GCSE pass,
where all constants that could be moved outside of a loop body still reside in sep-
arate pseudo-registers. Our tests have shown that such pass order change doesn’t
affect the performance of expedite test suite. Loop invariant code motion pass
has its own heuristics that estimate register pressure and doesn’t allow moving
invariant if it will likely result in a register spill. After loop invariants have been
moved, our restricted GCSE will only allow to move ”short” constants (those
which don’t require several operations to load) if moved into the loop body from
the outside, and will allow GCSE to proceed in its usual way on the same loop
hierarchy level. More strictly, at GCSE pass, we deny the transformation if the
following two conditions are met:

1. The expression moved is a ”long” 32-bit ARM constant, i.e. the constant
doesn’t fit into 12-bit immediate value (8-bit number and 4-bit shift values);

- 37 -

2. The expression is moved to destination block with a deeper loop hierarchy
level than the source block, e.g. from an outer loop into a nested loop body.

Our patch includes two options to control GCSE behaviour on ARM. First
option, -farm-fix-gcse checks just the first of above conditions, only deny-
ing transformation for long constants, and retaining original pass order; sec-
ond, -farm-fix-gcse-loop-hierarchy, checks both conditions before allowing
GCSE transformation and swaps GCSE and invariant code motion passes.

Restricting GCSE and letting loop invariant code motion pass to do its job
increases performance of libevas on average by 5.5%. Though it isn’t bet-
ter than simple -fno-gcse for this application, we believe that it’s the right
way to address the problem and that there are applications that benefit from
this approach. While testing our optimization on Aburto’s benchmark suite,
we found that it brings performance gain up to 10% on several tests without
any significant regressions on others, compared to completely disabling GCSE
which actually causes performance loss on this test suite. For example, on hanoi
benchmark, completely disabling GCSE causes ”short” constant 1 to be put into
separate register, which results in additional register save and restore instruc-
tions in function prologue and epilogue. Since the subject function is recursive,
these excessive instructions result in performance degradation by 10%, which is
fixed by our patch that lets GCSE to propagate this ”short” constant. We still
need to test this optimization on more applications to make sure loop invariant
code motion heuristics can handle well an increased number of loop invariants,
so it doesn’t cause performance regressions in loops with high register pressure.

3.2 The Register Allocator

Another problem we have found is excessive memory loads generated inside
loops. Figure 2(a) shows the original code generated by GCC for a simple
loop from evas common scale rgba in to out clip smooth c. Both load in-
structions could be placed outside the loop, if there were enough free hardware
registers available.

The reason for these excessive loads in the loop is that the cost of corre-
sponding pseudo registers was calculated using basic block frequency via integer
math, and truncating rounding caused sub-optimal code generation. We have
tried a patch to use rounding to nearest integer in the register allocator, and it
fixed the test case, but it did not provide performance improvements. We believe
that due to the NP -complete nature of register allocation problem [6] this case
represents just the bad case for register allocator heuristics, and in general it can
be possibly improved by providing better estimation for basic block frequencies,
which means using profiling information. Indeed, we have confirmed that when
the compiler has precise execution counts from profiling, it generates exactly the
same code for the problem loop either with or without the fix.

We have also tuned with ACOVEA the following GCC register allocator [9]
options and parameters: -fira-coalesce, -fira-algorithm, -fira-region,
-fno-ira-share-spill-slots, -fno-ira-share-save-slots, and ira-max-

- 38 -

.L133:

ldr lr, [fp, #-84]

mov r3, r1, asr #16

add r1, r1, r0

str r3, [lr, r2, asl #2]

ldr r3, [fp, #24]

add r2, r2, #1

cmp r3, r2

bgt .L133

(a) original code

.L133:

mov r3, r1, asr #16

str r3, [lr, r2, asl #2]

add r2, r2, #1

cmp r9, r2

add r1, r1, r0

bgt .L133

(b) code after a fix for reg-
ister frequency rounding
was applied

Fig. 2. Removing excessive invariant loads inside loops

loops-num. There were different option combinations found, that showed up
to 6.5% gain on certain tests, while causing sometimes even bigger regression
on others. Though only one option, -fira-coalesce seemed to improve per-
formance consistently for the majority of the tests, giving 1-1.5% average gain.
However, after we enabled -fprefetch-loop-arrays option later and tuned its
parameters, the positive effect from -fira-coalesce was not longer reproduced.
This shows that option tuning should involve all GCC options of interest at once,
since optimizations tend to influence each other. At the same time, increased op-
timization search space may result in too much time to complete the tuning to
make this approach practical.

3.3 Function Inlining

While tuning GCC inlining with ACOVEA, we found that libevas doesn’t
respond much to tuning its parameters, so we examined its source code to find
whether there is a potential for this optimizations or it’s just a problem with
automatic tuning strategy that can’t find the right parameters.

In libevas most CPU cycles are spent in tight loops performing rasteriza-
tion. These loops are manually optimized by EFL developers, so this application
has little inlinable calls that may affect the performance. We found that out of
19 EFL hottest functions that are invoked by expedite test suite 11 don’t have
calls at all, 4 have indirect calls through pointers, 1 is just a stub for memcpy, so
function calls that can be inlined by GCC present only in 3 of these functions,
which performance impact is minor. This way, the compiler options and param-
eters controlling inlining don’t affect significantly the performance of expedite
test suite, as we have found with automatic tuning, so libevas just might be
not the right candidate to tune these optimizations. A good candidate for such
study might be an application written in C++ that contains many small class
member functions.

- 39 -

3.4 Loop Unrolling and Prefetching

As a part of original libevas hand-optimization, most critical loops are unrolled
using custom UNROLL8 PLD WHILE macro, which duplicates given loop body 8
times. This leaves compiler with little options for loop unrolling optimization:
further unrolling such pre-unrolled loops usually doesn’t yield any additional
improvement. That’s why automatic tuning of the RTL unroller parameters,
similarly to inlining, didn’t show significant improvement.

Modern ARM architectures have a prefetching feature, which allows preload-
ing values from memory into L2 cache. This mechanism is controlled explicitly
by a programmer or a compiler by issuing pld instruction, which hints CPU that
data referenced by its argument soon will be needed, so CPU may start fetching
it into its cache.

The abovementioned UNROLL8 PLD WHILE macro, besides performing unrolling,
inserts one pld prefetch instruction per unrolled loop body, assuming that cache
line size equals to 32 bytes, and prefetching next cache line ahead of one iter-
ation. Though this configuration shows +2.5% performance increase on ARMv6,
it was found to be not optimal for Cortex-A8. Technical documentation for this
architecture specifies L2-cache line size equal to 64 bytes, so each pld instruction
generated with the macro hits the same cache line twice on Cortex-A8. Also,
prefetching just 32 bytes ahead may be too little to allow complete loading next
cache line before a new loop iteration begins. On the other hand, if the unrolled
loop iterates just 4 times, long prefetching distance would be fetching values that
will never be used.

We tried different prefetching parameters (distances in range from 32 to
320) and unrolling factors (from 2 to 16) and found that the best performance
with this macro on Cortex-A8 is achieved with no prefetching instruction at
all and with unrolling factor equal to 4. These changes together yield increase
of libevas performance by 6.5%, and the result can be evenly attributed to
removing prefetching and changing unroll factor from 8 to 4. These results par-
tially can be explained by the results of value profiling of UNROLL8 PLD WHILE
parameter size: about 20% of executed loops that are unrolled using this macro
iterate just 4 times, and for about half of these loops the number of iterations
doesn’t exceed 16.

Prefetching is an optimization feature that is hard to implement properly, if
it’s done manually at the source code level, especially when it comes to tuning
for different architectures at the same time. To benefit from this optimization,
hardware cache specification should be taken into the account, such as L1 and
L2 cache sizes, cache line size, the number of memory operations that can be
processed simultaneously, and a latency of loading data from main memory into
cache. GCC has a prefetching optimization (-fprefetch-loop-arrays) com-
bined with loop unrolling, which takes these parameters into account in effort
to generate optimal prefetching code.

GCC ARM backend doesn’t override hardware cache parameters, so with
this optimization common default GCC values are used, which were never tuned
specifically for this architecture. However, as we found with libevas tuning,

- 40 -

these parameters should be set distinctly even among different ARM architec-
tures. Not only these architectures have different latencies, cache sizes and limits
on number of parallelly executed loads, but also prefetch-latency parameter,
measured in number of instructions executed before prefetch operation is com-
pleted, has different meaning depending on instruction latencies and an issue
rate (e.g. Cortex-A8 is a dual-issue, while ARMv6 is single-issue architecture).

We tried to specify cache parameters found in ARM technical specification
(l1-cache-line-size=64, l1-cache-size=32, l2-cache-line-size=256) as
well as tuning them with ACOVEA. Specifying correct parameters from doc-
umentation does improve the performance, but with automatic tuning we have
found other parameter sets that slightly differ from those in technical specs but
give even greater improvement. Here are two best parameter strings found by
ACOVEA, each of them is beneficial for distinct subset of benchmarks:

1. l2-cache-size=256 l1-cache-size=16 simultaneous-prefetches=8
prefetch-latency=200 l1-cache-line-size=32

2. l2-cache-size=512 l1-cache-size=64 simultaneous-prefetches=6
prefetch-latency=400 l1-cache-line-size=64

The second parameter set provides slightly better overall performance, so
in final results table we use the latter. These two parameters have one com-
mon property: the simultaneous-prefetches parameter is set far above GCC
default value of 3.

Some parameters found by ACOVEA differ from those in hardware specifi-
cation, e.g. the best value found for l1-cache-line-size is 32, though ARM
documentation specifies line size equal to 64. Smaller cache line value causes
prefetch optimization to choose smaller unrolling factor (since it tries to issue
one prefetching instruction per unrolled loop body). So the fact that ACOVEA
has found cache line size to be less than that in specification shows that for some
tests smaller unrolling factor is better than not have an extra preload instruction,
which hits the same cache line twice.

Also, it can be noted that prefetching optimization with parameters properly
adjusted is overall 4% better than without prefetching and with just 4 regres-
sions in range 2.73%, opposed to default prefetching parameters which yield 9
regressions in that range and two 13% regressions, while gaining just 2% on av-
erage. Prefetching with parameters properly tuned speeds up certain tests by as
much as 20%.

3.5 Autovectorization for NEON

GCC features autovectorization for many SIMD architectures [8], including NEON
vfpu that is available in Cortex-A8. We studied how well this feature works with
libevas code. After enabling autovectorizer (-ftree-vectorize -mfpu=neon
-mfloat-abi=softfp), we were surprized to observe performance regression.
Since the target application spends most of its runtime in tight rasterization
loops, supposedly it should have respond well to vectorization.

- 41 -

int main() {
int a[256], b[256];
int i;

for (i = 0; i<256; i++) {
a[i] = b[i] >> 8;

}
}

(a) original code

.L2:
add r2, r0, r3
fldd d16, [r2, #0]
vmov.32 r2, d16[0]
vmov.32 r1, d16[1]
mov r2, r2, asr #8
str r2, [r5, r3]
add r2, r5, r3
add r3, r3, #8
mov r1, r1, asr #8
cmp r3, #1024
str r1, [r2, #4]
bne .L2

(b) Original assembly
code generated by
GCC

.L2:
add r2, r5, r3
add r1, r0, r3
add r3, r3, #8
cmp r3, #1024
fldd d16, [r1, #0]
vshl.s32 d16, d16, d17
fstd d16, [r2, #0]
bne .L2

(c) Assembly code after
NEON backend was
fixed

Fig. 3. Autovectorization of shift operation on NEON

First, we have analyzed why so few loops (just about 25%) were vectorized
automatically by GCC. Most common causes of autovectorizer’s failure were
the following: function calls within the loop body (mostly indirect calls, so they
can not be inlined), switch operator within a loop, and unsupported operations
(e.g. there is no support for vector division on NEON). It’s worth to note that
switch operators within loops in libevas are used to specialize two cases for
transparency values 0 and 1, so a multiplication by alpha-channel value could
be replaced with simple copy of either source or destination color value. Though
such specialization prevents the loop from being vectorized for NEON, pure
ARM specialized code still significantly outperforms autovectorized NEON code
on expedite tests.

We have found a problem with autovectorization of shift operations for
NEON. If a loop being autovectorized contains shift operations (>>), autovector-
izer is not able to find appropriate vector shift operation, so loop is vectorized
partially: for all the rest operations (except shifts) vector instructions are gener-
ated, but for shifts data is moved first from NEON vector registers to ordinary
ARM 32-bit ones, then ARM shifts for each vector component are issued, and
finally data is moved back to NEON registers to store the vector into memory.
Such transfers from NEON to ARM core and back cause severe performance
degradation of the affected loops. Figure 3 gives an example of such poor loop
auto-vectorization.

The cause for this problem was a bug in ARM NEON backend, which as-
signed shift operations to wrong operation table. Fixing this issue improved
overall expedite performance by 8.82%, while certain tests (”Rect Blend” fam-
ily), which suffered the most from poor shifts vectorization, grow as much as by
171%. There are few regressions, but most of them are within an error margin.

Also, we have found that specifying -mvectorize-with-neon-quad option
gives slightly better overall results (about 1%) than default double-integer vec-
torization.

- 42 -

4 Experimental results

The performance results on reduced expedite test suite (as described in Section
2) are presented in Table 1. These results were obtained on EBV Beagle board
with vga profile and using linux framebuffer. All the values presented are medians
among 3 runs of the whole test suite. Due to space constraints, we omit those
tests which performed similarly across all optimizations.

We reference each column with corresponding number. In the first row we
specify the options used for benchmarks, or reference with square brackets an-
other column where these options can be found, and specify just those options in
which they differ from the referenced column, e.g. ”[A2] no prefetch, unroll=4”
means ”the same compile parameters as for A2, but with manual prefetching in
macro turned off and unrolling factor set to 4”.

The first column of Table 1 (A1) gives numbers for base GCC optimization
level, -O2. We have chosen -O2 as the base, since our tests have shown that -O2
outperforms -O3 on expedite by 0.5-1%. The second column, A2, shows results
for base optimization level with GCSE turned off. It can be seen that this option
is good for almost every test, since in libevas long constants, whose perfor-
mance is highly affected by GCSE, are widely used in color component masks
(like 0xFF00FF00). The next column, A3 shows our efforts on fixing GCSE to
work properly on ARM rather than disabling it completely. Though currently
with libevas it doesnt show additional gain relative to -fno-gcse, we still
believe that for other applications this approach may be more profitable than
disabling GCSE, as we have seen 10% gain on Aburto’s hanoi benchmark. Still,
this optimization delivers performance 5.5% better than -O2. The next column,
A5, shows results for adjusting unrolling factor from 8 to 4 in UNROLL8 PLD WHILE
macro and disabling there manual prefetching (each of them contributed approx-
imately by 3%). The next two columns, A6 and A7, show numbers for prefetch-
ing/unrolling optimizations (-fprefetch-loop-arrays). This GCC optimiza-
tion with default parameters gives 2% average improvement, but with few seri-
ous regressions up to -13%. If parameters are tuned properly (we used the second
parameter string from Section 3.4), this optimization provides 4% improvement
(A7), while growth is more evenly distributed among tests and without signif-
icant regressions. Total average gain on customized expedite from all ARM
optimizations developed/tuned comparing to base -O2 level is 15.78%.

Due to space constraints, we don’t show separate results table for NEON
autovectorization. The main results for NEON autovectorization are as follows.
Fixing the autovectorization of shifts improved overall expedite performance by
8.82%, while certain tests (”Rect Blend” family), which suffered the most from
poor shifts vectorization, grew as much as by 171%. These results are achieved
with -mvectorize-with-neon-quad option, which gives about 1% overall gain,
and manual unroll factor set to 4 in macro. The manual unrolling factor setting
makes sense for those loops that don’t get autovectorized (e.g. due to the presence
of switch operator). Still, performance on pure ARM (without NEON) is 1.5%
better than that with NEON autovectorization due to unaligned data accesses
that autovectorizer currently doesn’t handle.

- 43 -

 -O2
(A1,
base)

-O2 -
fno-
gcse
(A2)

to
base,
%

-O2
-farm-
fix-
gcse
(A3)

to
base,
%

[A2]
no
prefet
ch,
unroll
=4 (in
macro
)
(A5)

to [A2]
-fno-
gcse,
%

[A5] -
fprefet
ch-
loop-
arrays
(A6)

to
[A5],
%

[A6] +
prefet
ching
param
s (A7)

to [A6]
(defau
lt
prefet
ch
param
s), %

to
[A5],
%

to
[base]
-O2,
%

 1 - Widgets File Icons 11.53 11.79 2.25 11.9 3.21 12.35 3.87 13.26 7.37 13.07 -1.43 5.83 13.36

 2 - Widgets File Icons 2 23.81 24.07 1.09 23.98 0.71 26.85 12.02 31.19 16.16 30.05 -3.66 11.92 26.21

 5 - Image Blend Unscaled 14.89 14.9 0.07 15.47 3.90 16.46 10.40 16.63 1.03 16.89 1.56 2.61 13.43
 6 - Image Blend Solid
Middle Unscaled 10.92 11.06 1.28 11.12 1.83 11.65 4.48 11.78 1.12 11.75 -0.25 0.86 7.60
 7 - Image Blend Fade
Unscaled 7.3 7.92 8.49 7.81 6.99 8.3 5.60 8.15 -1.81 8.35 2.45 0.60 14.38
 9 - Image Blend Solid
Unscaled 50.71 52.01 2.56 51.58 1.72 50.37 -3.25 50.91 1.07 52.54 3.20 4.31 3.61
 10 - Image Blend Solid
Fade Unscaled 10.44 11.73 12.36 11.63 11.40 12.53 6.10 12.38 -1.20 12.54 1.29 0.08 20.11
 11 - Image Blend Solid
Fade Power 2 Unscaled 10.46 11.74 12.24 11.63 11.19 12.55 6.18 12.38 -1.35 12.54 1.29 -0.08 19.89
 12 - Image Blend Nearest
Scaled 6.41 6.48 1.09 6.73 4.99 7.09 9.92 7.4 4.37 7.45 0.68 5.08 16.22
 14 - Image Blend Smooth
Scaled 1.37 1.45 5.84 1.45 5.84 1.47 7.30 1.43 -2.72 1.43 0.00 -2.72 4.38
 16 - Image Blend Nearest
Same Scaled 22.81 23.91 4.82 23.86 4.60 24.62 1.53 25.12 2.03 25.05 -0.28 1.75 9.82
 17 - Image Blend Nearest
Solid Same Scaled 63.29 64.85 2.46 64.25 1.52 63.84 -1.51 65.43 2.49 66.1 1.02 3.54 4.44
 18 - Image Blend Smooth
Same Scaled 22.87 24.22 5.90 23.71 3.67 24.74 2.02 25.13 1.58 25.1 -0.12 1.46 9.75
 19 - Image Blend Smooth
Solid Same Scaled 69.94 71.61 2.39 71.31 1.96 69.36 -4.01 70.91 2.23 73.27 3.33 5.64 4.76

 20 - Image Blend Border 1.47 1.56 6.12 1.56 6.12 1.62 10.20 1.58 -2.47 1.58 0.00 -2.47 7.48
 21 - Image Blend Solid
Middle Border 14.15 14.61 3.25 14.61 3.25 14.82 4.15 14.83 0.07 14.84 0.07 0.13 4.88
 22 - Image Blend Solid
Border 20.69 21.57 4.25 21.59 4.35 21.73 3.97 21.52 -0.97 21.74 1.02 0.05 5.07
 23 - Image Blend Border
Recolor 1.4 1.49 6.43 1.48 5.71 1.51 9.42 1.49 -1.32 1.49 0.00 -1.32 6.43

 25 - Image Data ARGB 48.18 47.74 -0.91 47.07 -2.30 47.64 1.21 53.73 12.78 55.33 2.98 16.14 14.84
 26 - Image Data ARGB
Alpha 18.18 18.41 1.27 18.31 0.72 19.94 8.90 24.02 20.46 22.2 -7.58 11.33 22.11
 27 - Image Data YCbCr
601 Pointer List 31.04 31.88 2.71 31.18 0.45 31.89 2.08 32.55 2.07 33.16 1.87 3.98 6.83
 28 - Image Data YCbCr
601 Pointer List Wide
Stride 25.95 27.51 6.01 27.13 4.55 27.57 6.12 27.13 -1.60 28.29 4.28 2.61 9.02

 29 - Image Crossfade 33.21 34.6 4.19 34.36 3.46 34.85 1.46 45.6 30.85 41.99 -7.92 20.49 26.44

 30 - Text Basic 38.4 38.89 1.28 38.74 0.89 39.74 4.44 40.68 2.37 41.31 1.55 3.95 7.58

 31 - Text Styles 3.76 3.8 1.06 3.82 1.60 3.93 3.69 3.94 0.25 3.97 0.76 1.02 5.59

 33 - Text Change 19.8 19.89 0.45 19.56 -1.21 20.93 6.24 21.58 3.11 21.79 0.97 4.11 10.05

 34 - Rect Blend 5.76 8.24 43.06 8.19 42.19 10.73 30.22 9.32 -13.14 12.61 35.30 17.52 118.9

 36 - Rect Solid 44.63 46.73 4.71 45.9 2.85 50.47 9.55 52.88 4.78 53.13 0.47 5.27 19.05

 37 - Rect Blend Few 711.5 824.2 15.84 818.5 15.04 923.4 14.51 889.4 -3.69 943.8 6.12 2.21 32.65

 39 - Rect Solid Few 1066 1096 2.80 1088 2.05 1204 12.33 1230 2.14 1176 -4.37 -2.33 10.30
 41 - Image Blend Occlude
2 Few 131.1 133.8 2.09 136.1 3.81 139.6 4.97 143.2 2.59 146.8 2.55 5.20 12.01
 43 - Image Blend Occlude
1 Many 64.13 67.64 5.47 67.86 5.82 68.92 3.51 68.31 -0.89 69.28 1.42 0.52 8.03

 45 - Polygon Blend 11.1 13.44 21.08 12.67 14.14 13.65 4.04 13.33 -2.34 15.16 13.73 11.06 36.58

Geometric Mean 22.97 24.32 5.88 24.23 5.48 25.55 6.47 26.06 1.97 26.60 2.09 4.09 15.78

Table 1. The performance results (frames per second)

- 44 -

We have also verified the results against full original expedite test suite
(as found in EFL repository) with 11.12% average performance optimization
and with two different Cortex-A8 boards. Also, we verified the results with a
different input data set, getting about 8% gain on original expedite.

5 Future work

Though we have fixed the vector shift instructions, there are still problems re-
maining with this optimization. First, autovectorizer currently is unable to pro-
duce operations involving vector and scalar arguments at the same time, e.g.
for original operation a[i] << CONST it would first produce a vector containing
four identical constants, and only then issue a vector operation a vec[j] <<
4xCONST, though NEON has a distinct operation for shifting vector by a single
scalar. Second, the vectorizer can only handle aligned data, and if at runtime
it finds out it’s misaligned, it executes regular non-vectorized version of a loop,
thus wasting time on alignment checks. We believe that this GCC optimization
has more potential, and additional efforts should be done in improving autovec-
torization for NEON.

The results of tuning GCC loop prefetching/unrolling optimization prove
that it is important for achieving good performance on ARM in applications
with intensive memory usage and regular memory access pattern (like rasteriza-
tion routines in libevas). Its performance results may vary among applications
(as they vary among expedite tests), from input data (with small data sizes
prefetching won’t have time even to complete a load of first portion of data since
prefetch distance may be greater than data size), and from the target architec-
ture. We think that this optimization needs more detailed manual analysis so
to find whether it has some implementation specifics that can be improved on
ARM, as well as automatic tuning of its parameters with more applications.

Also, more general mechanism should be developed to provide GCSE opti-
mization with a target-specific information on representation of constants (e.g.
via a target hook), so to improve code on other architectures that may have
similar constraints to those found on ARM.

6 Conclusions

We have identified a number of performance regressions in GCC optimizations
with libevas on ARM, including GCSE, register allocation, autovectorization
and loop prefetching, and suggested fixes to them. The solutions proposed alto-
gether brought 15.78% average performance increase as measured with reduced
expedite benchmark (as described in Section 2), with up to 119% increase on
certain tests. We have verified the produced speedup on the full benchmark with
11.12% average performance optimization and with up to 119% performance in-
crease on some tests.

Overall, we believe that a project on optimizing GCC compiler for certain
applications and target architecture (both manually and automatically) makes

- 45 -

perfect sense, as such projects identify weak places of the compiler with regard
to this target and application, and fixing these places may bring performance
improvements. The results of such optimization should be made available to
GCC community and developers of the target application so to avoid duplicate
work on the same compiler optimizations and to encourage further development
of the application using coding practices found to help compiler optimizations.
After optimizations developed will be verified on wider range of applications,
they could be enabled by default in GCC compiler for this target platform.

References

1. ARM Cortex-A8 Technical Reference Manual. http://infocenter.arm.com/

help/topic/com.arm.doc.ddi0344d/DDI0344D_cortex_a8_r2p1_trm.pdf

2. The Enlightenment Foundation Libraries (EFL) web page. http://www.

enlightenment.org/p.php?p=about/efl

3. ACOVEA home page. http://www.coyotegulch.com/products/acovea/index.

html

4. Christopher G. Langton, ed. Artificial Life: An Overview. MIT, 1997.
5. David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learn-

ing. Addison-Wesley, 1989.
6. A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques and Tools. Addison-

Wesley, 1988.
7. E. Morel, C. Renvoise. Global Optimization by Suppression of Partial Redundan-

cies. In Communications of the ACM, Vol. 22, Num. 2, Feb. 1979.
8. D. Nuzman, R. Henderson. Multi-platform Auto-vectorization. In Proceedings of

the International Symposium on Code Generation and Optimization, 2006.
9. V. Makarov. The integrated register allocator for GCC. In Proceedings of the GCC

Developers Summit, July 2007.

- 46 -

Portable and Efficient Auto-vectorized Bytecode: a
Look at the Interaction between Static and JIT

Compilers

Erven Rohou – HiPEAC member

INRIA, Rennes, France

Abstract. Heterogeneity is a confirmed trend of computing systems. Byte-
code formats and just-in-time compilers have been proposed to deal with the
diversity of the platforms. By hiding architectural details and giving software
developers a unified view of the machine, they help improve portability and
manage the complexity of large software.

Independently, careful exploitation of SIMD instructions has become crucial
for the performance of many applications. However, auto-vectorizing compil-
ers need detailed information about the architectural features of the processor
to generate efficient code.

We propose to reconcile the use of architecture neutral bytecode formats with
the need to generate highly efficient vectorized native code. We make three
contributions. 1) We show that vectorized bytecode is a viable approach that
can deliver portable performance in the presence of SIMD extensions, while
incurring only minor penalty when SIMD is not supported. In other words,
the information that a loop can be vectorized is the vectorized loop itself.
2) We analyze the interaction between the static and just-in-time compilers
and we derive conditions to deliver performance. 3) We add vectorization
capabilities to the CLI port of the GCC compiler.

1 Motivations

In this study, we attempt to reconcile two apparently contradictory trends of com-
puting systems. On the one hand, hardware heterogeneity favors the adoption of
bytecode format and late, just-in-time (JIT) code generation. On the other hand,
exploitation of hardware features, in particular SIMD extensions, is key to extract
performance from the hardware.

1.1 Mobile Long-lived Applications and Processor Heterogeneity

Heterogeneity of computing systems is a global trend. On embedded systems, this
trend has been driven by the drastic constraints on cost, power and performance.
General purpose computers also feature some degree of variability: availability of a
floating point unit, width of the vectors of the SIMD unit, number of cores, kind and
features of the GPU, and so on. Some predict that technology variability will make
it hard to produce homogeneous manycores, and that the large number of available
cores will push to specialize cores for dedicated tasks [7].

- 47 -

The lifetime of applications is much longer than that of the hardware. This prob-
lem is known as legacy code in the industry. Embedded systems rarely offer binary
compatibility because of the associated cost. Servers and personal computers usually
do, but at a significant design cost (with occasional disruptions like DEC, or Apple).
However, compatibility is limited to functionality; old code can only take advantage
of increased clock frequency (which, incidentally, has recently stopped) and improved
microarchitecture, but not of additional features or increased parallelism. Applica-
tions also become mobile. Because of the ubiquity of computing devices, application
developers must make sure that their applications run on dozens of platforms, some
being unknown or not completely specified.

Bytecode formats and just-in-time compilers have been proposed to deal with
heterogeneity. Bytecode can be deployed to any system as long as a JIT compiler
is available for each core on which the code is going to run. Application developers
do not even have to know the hardware on which their code will eventually run.
Processor virtualization, i.e. virtual machine and JIT compilers, is a mature and
widely spread technology: Java applications can be found from games in cell phones
to web servers and banking applications, and CLI [8] (the core of the .NET initiative
[16]) is growing fast. Virtualization can address the above mentioned problems: it
reduces the burden put on software developers who no longer need to deal with vary-
ing hardware, it guarantees that application lifetimes can span several generations
of hardware, and, to some degree, it makes it possible for old code to exploit new
hardware features.

1.2 Exploitation of Word-Level Parallelism

The careful exploitation of SIMD instructions is crucial for the performance of many
applications. All major instruction sets provide SIMD extensions (SSE on x86 pro-
cessors, Altivec on PowerPC, VIS on Sparc, etc.), and keep adding new vector in-
structions (SSE4.1, SSE4.2, SSE4a). Even though significant progress has been made
in the recent years, good auto-vectorization is still an open difficult problem. This
is illustrated by the abundance of literature [1, 3, 14, 17], the ongoing work in open
source compilers like GCC, or simply the existence of source-level builtins that let
programmers insert instructions by hand when the compiler fails to detect a pattern.

Auto-vectorization is a complex optimization for several reasons:

– strong conditions must be met by the code, in particular in terms of data de-
pendencies;

– for better applicability, one wants the optimization to also apply to outer loops
and to handle strided accesses and other complex patterns;

– each particular instruction set has a very specific set of vector instructions, and
associated constraints [17]: required alignment, available registers, etc.

1.3 Putting Things Together

If static compilers have a hard time vectorizing loops, the situation is much worse
for JIT compilers. A simple look at the vectorizer in GCC gives an idea — more
than 20,000 lines, not counting data dependence analysis and the construction of the
SSA form. The complexity of the analysis and transformation makes the vectorizer

- 48 -

unfit for JIT compilers which are often running on memory and CPU constrained
environments.

Conversely, statically auto-vectorizing loops for a bytecode representation is chal-
lenging because the actual features and constraints of the execution platform are
unknown at compile-time. At run-time, SIMD extensions might not be available.

In this paper, we investigate how processor virtualization and auto-vectorization
can be reconciled. We make three contributions:
1. we show that vectorized bytecode is a viable approach, that can yield the ex-

pected speedups in the presence of SIMD instructions, and a minor penalty in
its absence;

2. we measure the performance of loop kernels on several architectures, we ana-
lyze the interaction between the static and the JIT compilers and we provide
suggestions for a good performance of vectorized bytecode;

3. we describe our modifications to the CLI port of the GCC compiler to emit
vectorized bytecode, and we make them publicly available in the GCC repository.

This paper is organized as follows. Section 2 presents the high level view and
rationale of our approach, while Section 3 goes over the details of the implementation.
We develop our experiments and our analyses in Section 4. Related work is reviewed
in Section 5 and we conclude in Section 6.

2 Reconciling Processor Virtualization and
Auto-vectorization

This paper uses or refers to compilation and optimization techniques, such as func-
tion inlining, loop unrolling, data dependence analysis, SSA form. We did not in-
troduce any new technique per se, but rather we take them for granted and we use
them. The interested reader can refer, for example, to [15].

2.1 Split-Compilation

Our proposal builds on top of the idea of split-compilation. Split-compilation refers to
the fact that a given source code undergoes two compilation steps before it becomes
machine code.
1. The first step translates source code to bytecode. This happens on the program-

mer’s workstation. This means that the resources available to the compiler are
virtually unlimited: gigahertz, gigabytes and minutes of compile-time are com-
mon. However, no assumption can be made on the actual platform on which the
application will eventually run.

2. The second step converts the bytecode to machine code. It happens just-in-
time, i.e. on the final device and at run-time. Resources are likely to be limited,
especially on an embedded system like a cell phone or a DVD player. Compile-
time is also visible to the end-user, and thus it must be kept as small as possible.

The key of split compilation is to move as much complexity as possible from the
second step to the first one [19]. The first pass is in charge of all target independent
optimizations. Target specific optimizations obviously cannot be applied. Expensive
analyses, however, can be run, and their results encoded in the bytecode, so that
the JIT compiler can directly benefit from their outcome.

- 49 -

2.2 Vectorized Bytecode

Previous work by Leśnicki et al. annotated the bytecode to mark the variables and
types of interest to the JIT compiler (see Section 5 for more details). We believe that
this kind of annotation was rather difficult to generate and left too much work to
the online vectorizer. Instead, we choose a more drastic approach: the information
that a loop can be vectorized is the vectorized loop itself. All the expensive loop
transformation is done in the first pass, and we make sure that it can be undone at a
low cost if necessary. It is cheaper (at run-time) to undo a speculative vectorization
than to do it when necessary.

As further explained in Section 3, we base our work on the CLI format. However,
it is very important that we do not extend the format itself. The vectorized bytecode
we produce must run unmodified on any CLI compliant virtual machine. Vector
information is expressed by means of new types and methods. Vector operations in
the user code appear as method invocations.

We need to achieve three objectives:

1. in the presence of SIMD extensions in the instruction set, a JIT compiler aware
of our optimization must produce fast machine code;

2. in the absence of SIMD extensions, or when using any other JIT compiler, the
code must run correctly; and

3. the penalty when running vectorized bytecode without SIMD support (whether
in the JIT compiler or in the instruction set) must be minimum.

All three objectives are made possible by the dynamic code generation mecha-
nism. Point 1 is “simply” a different code generation. The static and JIT compilers
must agree upon a naming convention for special types and methods. When a call
to such a method is encountered, a specialized instruction pattern is emitted, in-
stead of a call. Figure 1 illustrates this for a simple vector addition. Column (a)
shows the C code for this simple loop. Column (b) shows a part of the loop once
translated to CLI bytecode. Bear in mind that the execution model relies on an
execution stack. Vector4f is a type defined in a library that represents a vector
of four single precision floating point numbers. ldloc ’b’ places the address of a
vector element on the stack. ldobj consumes the address and loads the element on
the stack. The same is true for element c. The method Add is then called to perform
the addition. The result is stored at the address initially pushed on the stack by the
ldloc ’a’ instruction. The remaining instructions increment the induction variable
a. When translating this bytecode (column (c), showing x86 assembly code [10]), the
JIT compiler recognizes the type Vector4f and it emits a movups instruction that
targets an SSE register. Similarly, Add is recognized, and a single addps instruction
is emitted.

Point 2 consists in providing a library which implements all the functions defined
by the naming convention. A compiler unaware of the special semantics will emit
regular code, the same way as any other code.

Point 3 combines the just-in-time code generation with inlining. We make the
assumption that JIT compilers always have the capability to inline functions. This is
not a strong assumption because bytecode and JIT compilers were initially designed
for object oriented languages, which tend to encourage small functions, including
accessors (setters/getters) and constructors. Inlining has been key for performance

- 50 -

f loat a [N] ;
f loat b [N] ;
f loat c [N] ;
for (i =0; i<n ; ++i)
{

a [i]=b [i]+c [i] ;
}

ldloc ’ a ’
ldloc ’b ’
ldobj Vector4 f
ldloc ’ c ’
ldobj Vector4 f
ca l l Vector4 f : : Add
stobj Vector4 f
ldloc ’ a ’
ldc . i 4 16
st loc ’ a ’

. . .

movups (% e s i) ,%xmm0
movups (%ecx) ,%xmm1
addps %xmm1,%xmm0
movups %xmm0,(%eax)
add $16 , %ecx
add $16 , %e s i

. . .

f l d s (%ebx)
f l d s (%ecx)
faddp %st ,% s t (1)
f l d s 0x4(%ebx)
f l d s 0x4(%ecx)
faddp %st ,% s t (1)
f l d s 0x8(%ebx)
. . .
f s t p s 0x8(%eax)
f s t p s 0x4(%eax)
f s t p s (%eax)

(a) C source code (b) CLI bytecode (c) x86 with SSE (d) x86 without SSE

Fig. 1. Code generation schemes

since the beginning of this technology. The vector operations provided in the library
are very basic, they include arithmetic, constructors, and load or store operations.
They are good candidates for inlining. The end result after minimal cleanup is code
similar to the column (d) of Figure 1. The vector operations are effectively unrolled
by an amount equal to the width of the vector. Unrolling is known to help perfor-
mance at the expense of code size. However, we do not expect any significant code
bloat because only the small loops corresponding to vector operations are unrolled.

Vectorizing the bytecode gives another advantage: in cases when the static com-
piler is not able to generate the SIMD instructions, programmers can still manually
insert builtins in the source code, as they usually do for performance critical loop
nests. It makes no difference to the JIT compiler whether those builtins were auto-
matically generated or hand written.

2.3 Other Design Decisions

SIMD instruction sets vary a lot in number of supported idioms, expressiveness, and
constraints. Many choices can be made to best match the abstract vector represen-
tation of the bytecode to all possible instances of vector instruction sets. Because we
rely on an existing compiler (see Section 3), our choices are limited and we mostly
follow the decisions made in the GCC GIMPLE representation. For further details
about those design decisions, we refer to the discussion “Generality vs. applicability”
of [17].

Alignment Alignment constraints and realignment idioms are a typical burden of
vectorizing compilers. We face the additional problem that the static compiler does
not know whether the target supports unaligned accesses. We have two options.

– We support unaligned accesses in the bytecode. The static compiler generates
simpler code. It is up to the JIT compiler to realign memory accesses if needed.

– Or we require aligned memory accesses in the bytecode. In this case, the static
compiler generates the realignment code in the bytecode. The JIT compiler is
guaranteed to see only aligned memory accesses.

We decided for the former approach, because it generates simpler code. The latter,
while always correct, requires extra work from the JIT compiler when misaligned ac-
cesses are available: it needs to eliminate redundant checks or even entire loops that

- 51 -

were generated to realign accesses by peeling some iterations off the main computa-
tion loop. In the former approach, the static compiler can pass alignment information
to the JIT compiler, so that no unnecessary realignment is generated when arrays
are known to be properly aligned.

Vector Width Vector width is another parameter dictated by the architecture, hence
unknown in the static compiler. We take the following approach: since most archi-
tectures have 128-bit wide vector operations, this is the width we vectorize for. An
architecture with a different vector width, like the upcoming AVX or Larrabee)
will fall back on the scalar implementation as described in this section. A smarter
JIT compiler could try adjust to the actual width, but this needs additional data
dependence analysis at run-time, or extra annotations that specify the maximum
vectorization factor for each loop.

Multiversioning We could have made the choice to generate two versions of each
loop: a vectorized one, and a scalar one. The consequence, however, is that the
static compiler should use a reduced set of vector instructions, unless it runs the risk
that the vectorized code is too specialized and never runs on many architectures.
Another option is to generate more than two versions of the same loop (a technique
generally called multiversioning), to adjust to most targets. Obviously the cost is
code size increase. Generating several versions of each vectorizable loop in not even
an option for embedded systems, for example.

Our approach has the advantage that it exposes all the opportunities to the JIT
compiler in a single version of the loop, while letting it gracefully handle the patterns
that do not have hardware support.

3 Implementation

Proper evaluation of our proposal requires aggressive static and JIT compilers to
make sure that results are not biased because of poor optimizations unrelated to
our focus. Compilers — static and JIT — are huge pieces of software. We leveraged
two open-source software projects: GCC for the static compiler, and Mono for the
virtual machine and JIT compiler.

We chose to implement our experiments in the GCC compiler for several reasons
beyond the availability of the source code. The good quality of the generated code
makes the results trustworthy, and the well documented auto-vectorizer [18], despite
its internal complexity, is easy to retarget thanks to the GCC machine model.

We have shown that the CLI format is appropriate for deployment onto embedded
systems [4, 6]. CLI is a standard format [8], which means that it is more likely to
be portable to various architectures. In fact, several commercial and open-source
projects already provide execution environments for the CLI format (see Section 5).

We previously developed a GCC back-end for the CLI format [5, 20], however
with very limited support for vector types. One of the contributions of this work is
to add vectorization capabilities to the CLI back-end. It is publicly available in the
branch st/cli-be of the GCC repository.

- 52 -

3.1 Machine Model Technicalities

Activating the GCC vectorizer consists in modifying a few places in the machine
description files. First we need to globally instruct the compiler that vector modes
are supported by defining the function cil32_vector_mode_supported_p.

Then, we need to provide the width of the available vector types. This is accom-
plished through the macro UNITS_PER_SIMD_WORD.

Ideally, the CLI machine description does not need any register at all, since oper-
ations are carried on the evaluation stack, and the set of local variables (CLI locals)
used to store values is infinite, making register allocation a non-issue. Still, GCC
needs a minimal set of registers for its own mechanics. In particular, the largest mode
that can be produced by the vectorizer is computed from the largest set of contiguous
registers in the same class. The existing machine description defined only one 32-bit
register, thus making vectorization impossible. We increased the number of available
registers by modifying the macros FIXED_REGISTERS and CALL_USED_REGISTERS. We
also modified FIRST_PSEUDO_REGISTER accordingly.

Finally, we simply add the definition of the supported vector modes and all the
supported arithmetic instructions to the machine description file cil32.md, as well
as the special movmisalign instruction used by GCC to generate misaligned accesses.

3.2 Intermediate Representation

We keep the GIMPLE representation, and the vectorizer as a whole, unmodified.
Vector types are produced by the vectorizer as usual, based on the information
derived from the machine model. The differences appear in the stack based interme-
diate representation (IR), introduced in [20] to replace RTL in the CLI back-end.
This representation was shown to be better for emitting CLI for two main reasons:
it has a concept of evaluation stack, and it is strongly typed, a necessary condition
to emit correct CLI.

Most vector operations are eventually translated in the bytecode as calls to well
defined library functions (builtins). However, function calls tend to make the code
more difficult to analyze and optimize. For this reason, we try to postpone the
emission of the builtins as much as possible. In particular, we rely on the existing
policy in GIMPLE and the stack-based IR assuming that arithmetic operators are
polymorphic: we do not add any new arithmetic nodes operating on vectors. Rather,
we extend the semantics of existing operators to accept the new vector types.

We handle the vector constructors (the CONSTRUCTOR GIMPLE node), with a
new IR statement named VEC_CTOR. To distinguish vector loads and stores, we also
introduce a LDVEC and a STVEC instruction. Similarly to GIMPLE, we introduce new
statements for operators which do not have any scalar equivalent, for example the
dot product, or the saturating arithmetic.

We add a pass just before the CLI emission to recognize the vector statements
and to transform them to calls to builtins. This pass walks over all the statements of
a function, and computes the status of the stack before each of them (this is always
possible without dataflow analysis thanks a special constraint of the CLI format, see
§ III, 1.7.5 of [8]). Arithmetic statements that operate on vector types are replaced
by the corresponding builtin. Constructors and LDVEC STVEC are rewritten.

- 53 -

3.3 Execution Environment

We used Mono [13] as our execution platform. Mono is an open development initiative
to develop a UNIX version of the Microsoft .NET environment. It contains a CLI
virtual machine — complete with a class loader, a JIT compiler and a garbage
collector — as well as a class library and a compiler for the C# language. In this
project, we rely on the JIT compiler of the VM.

The Mono environment contains the library Mono.Simd.dll. It defines all the
128-bit vectors types (four single precision floats, four 32-bit integers, eight 16-bit
integers, etc.), and the basic arithmetic operations on them. A source implementation
of the types and methods is provided in C#, and compiled to CLI. This code is used
as a backup for JIT compilers unaware of the special naming convention. We rely on
the naming convention defined by Mono in this library. On the x86 platform, Mono’s
JIT compiler recognizes the special semantics. Many other platforms are supported
by Mono, but the SIMD extensions are not implemented yet.

4 Experiments and Analysis

This section presents our experiments with some loop kernels. It shows how initial
results were far from acceptable, and it analyzes what are the minimum conditions
to produce efficient code.

4.1 Setup

Our goal is to illustrate the advantage of vectorizing bytecode. The focus in on
the specificities of target independent bytecode. Effectiveness of vectorization as
an optimization technique is not the point of our work, it has been proved already
elsewhere, and we take it for granted, as any other optimization mentioned in this
paper. For this reason, we decided to show some results only on small kernels that
illustrate the key features of vectorization. Using real application would only blur
the specific behaviors we are interested in. We use the same benchmarks as [17].
See Table 1 for a short description. They cover several data types and type sizes
(single precision floating point, 8-bit and 16-bit integers). They also illustrate various
features of the vectorizer: simple arithmetic, reductions, use of a constant. All kernels
operate on arrays of 1000 elements, except sum u8 and sum u16 which operate on
10,000 elements to keep the running time in the order of a few seconds. Each kernel
is also wrapped by a main loop that executes many times.

Since those benchmarks, from the BLAS suite, are written in Fortran, we wrote
a straightforward implementation in C. We used the latest release of Mono at the
time of writing: version 2.4.2.3. The CLI backend is based on GCC version 4.4. In
order to demonstrate both the performance advantage and the portability, we run
our experiments on several hardware platforms:

– a desktop PC featuring an Intel Core2 Duo clocked at 3 GHz — supporting the
SIMD extensions MMX, SSE, SSE2, SSSE3 — running Linux 2.6.27;

– a Sun Blade 100 featuring a TI UltraSparc IIe, clocked at 500 MHz, running
Linux 2.6.26.

- 54 -

Name Description Data type Features

vecadd fp addition of two vectors floating point arithmetic
sdot fp dot product of two vectors floating point reduction
saxpy fp constant times a vector plus a vector floating point constant
dscal fp scale a vector by a constant floating point constant
max u8 find maximum over elements of a vector 8-bit char reduction
sum u8 sum the elements of a vector 8-bit char reduction
sum u16 sum the elements of a vector 16-bit short reduction

Table 1. Description of the benchmarks

Note that, even though the UltraSparc has a SIMD instruction set extension VIS,
the Mono JIT compiler does not exploit these extensions yet. It does support the
SSE extension on the x86 architecture. We also simulate an x86 platform without
SIMD support by running the experiments on the same desktop PC and by disabling
the SIMD intrinsics recognition.

4.2 Initial Results

In this first experiment, we run the benchmarks with three configurations on the
x86 platform. In all cases of Table 2, the C programs are compiled to bytecode, and
the bytecode is run by the Mono JIT compiler.

1. Firstly, we generate the bytecode without the vectorizer. That is, we use GCC
with the command line flags -O2 -fno-tree-vectorize (note that, as of today,
-O2 would be sufficient since the vectorizer is only enabled at -O3). This gives
us our baseline, reported in the column scalar of Table 2.

2. Secondly, we compile the benchmarks again, with the vectorizer enabled, using
-O2 -ftree-vectorize. Running times are reported in the columns vectorized
as absolute values and as performance relative to the scalar version (defined as
the scalar base time divided by the new time). The next column, labeled max
indicates the rough maximum speedup one would naively expect, based on the
data type.

3. Finally, the vectorized bytecode produced in the previous step in run again, but
without SIMD support in the JIT compiler. On x86, this is achieved by adding
the flag --optimize=-simd to Mono.

At first glance, we can make the following high-level comments:

– sdot is not vectorized. This is confirmed by the activating the vectorizer’s debug-
ging messages. Figuring out the cause of this missed optimization was beyond
the scope of this paper, and we omitted sdot in the rest of this paper.

– The vectorized bytecode shows significant speedups, ranging from 1.8 to 9.1.
– Even though the speedups are high, one might expect even more: 32-bit float-

ing point values packed in 128-bit vectors gives an upper bound value for the
speedup of 4 for the benchmarks vecadd, saxpy, dscal. The kernels max u8 and
sum u8 operate on 8-bit integers, let us expect a 16x speedup. max u8 achieves
a reasonable score of 9.1, but sum u8 obviously has a problem.

– The performance of the vectorized code run without SIMD support is unaccept-
able, with relative performance in the range 0.22 to 0.52.

- 55 -

benchmark scalar vectorized no SIMD
time time rel. perf. max time rel. perf.

vecadd fp 1893 815 2.3 4 4475 0.42
sdot fp 3039 3039 1.0 4 3039 1.0
saxpy fp 2429 1224 2.0 4 8531 0.28
dscal fp 1921 733 2.6 4 4122 0.47
max u8 3156 346 9.1 16 6101 0.52
sum u8 9030 2613 3.5 16 32528 0.28
sum u16 9334 5223 1.8 8 42339 0.22

Table 2. Initial performance results on x86 (106 iterations, time in ms)

benchmark scalar previous no SIMD
time rel. perf. time rel. perf.

max u8 3156 0.52 5185 0.61
sum u8 9030 0.28 20569 0.44
sum u16 9334 0.22 27565 0.34

Table 3. Performance results on x86, with inlining

4.3 Missed Inlining

We first look at the disastrous performance of the code in the absence of SIMD
support, especially the bottom two kernels of Table 1. It turns out that the function
which implements the vector operation (sum or max) is not inlined as we expected.
It is inlined in the case of the floating point kernels. We found out that the coding
style in Mono.Simd differs according to the size of the vector: 4-element vectors
arithmetic (e.g. floating point) is implemented as four sequential statements, while
8-element and more vectors are implemented with a loop. This loop changes the
outcome of the inlining heuristic of the JIT compiler. We rewrote the code of the
library and reran those three tests, obtaining the numbers of Figure 3.

Unfortunately, the call to max is still not inlined, but we still obtain slightly better
code for max u8. Even though the slowdown of the sum kernels is still unacceptable,
the improvement is also noticeable.

4.4 Manual Improvements

We then take advantage of the tracing capabilities of the JIT compiler and we dump
the code emitted for vecadd for manual inspection. Functions calls are effectively
inlined, however the resulting x86 code looks extremely poor. The loop contains 91
instructions. In comparison, the emitted code for the scalar version is 12 instructions
long. Since combining vectorization and inlining amounts to unrolling the loop four
times, one would expect in the order of 48 instructions, not taking into account
induction variable simplification. Careful analysis shows that the input values (the
vector elements) are copied twice in the function stack frame before being loaded in
the floating point unit, and the output values are copied three times on their way
from the floating point unit to their final destination. Our hypothesis is that the JIT
compiler is missing a simple pass of copy propagation and dead code elimination
after inlining.

- 56 -

benchmark scalar vectorized no SIMD
time time rel. perf. max time rel. perf.

vecadd fp 1197 537 2.2 4 1228 1.0
saxpy fp 1544 724 2.1 4 1890 1.2
dscal fp 1045 657 1.6 4 1095 1.0
max u8 3541 227 15.6 16 3735 1.1
sum u8 6707 1277 5.3 16 8925 1.3
sum u16 6710 2547 2.6 8 8198 1.2

Table 4. Final results on x86

We manually optimize the code produced by Mono, and link it again with the loop
driver in the main program1. Since the loop is a single basic block, copy propagation
and dead code elimination are straightforward, and very much within the capabilities
of a JIT compiler. Running the experiment again, we measure 1228 ms, which is 3.6
times faster that the original. We apply the same simple cleanup to all vectorized
benchmarks, we obtained improvements ranging from 3.6 to 5.2, with the exception
of max u8 which scores “only” 1.6 because of the presence of the function calls.

In the interest of fairness, we apply the same simple manual code optimizations
on all the generated versions of the loops of Table 2: scalar, vectorized, and vectorized
without SIMD support. The consolidated results are presented in Table 4.

4.5 UltraSparc

We run the same set of experiments on the UltraSparc workstation, with the ex-
ception that Mono does not implement the SIMD code generation for this processor
yet. All the finding on the x86 architectures have their counterpart on the Ultra-
Sparc, which is not surprising since the JIT compiler engine is the same. Because of
the RISC nature of the UltraSparc, loading a long immediate in a register requires
two instructions, and the address computation of an array element requires a third
instruction for the addition. Since the first two instructions load a constant address,
they are loop invariant and it was an additional obvious manual optimization to
hoist them outside the loop. Table 5 shows the final results.

Speedups come from the fact that inlining the vector operations is similar to
unrolling the small loops. In the case of the reduction kernels, this speedup is offset
by the reduction epilogue and the less-than-optimal code generation.

4.6 Final Comments

The optimizations we run manually are basic compiler optimizations, which run in
linear time. They are by no means out of reach of a JIT compiler. It should simply
be a matter of running them again before code emission.

The generated vectorized code can be further improved, beyond our manual
cleanup. In particular, intermediate results are continuously loaded and stored on
1 In doing this, we potentially bias our results by omitting the compile-time of the JIT

compiler. We verified that this is not the case: Mono reports compiling time below 0.25 ms
for each of our loop kernels.

- 57 -

benchmark automatic after manual cleanup
scalar vectorized rel. perf. scalar vectorized rel. perf.

vecadd fp 4215 11193 0.38 2810 1947 1.4
saxpy fp 5216 21011 0.25 3812 3239 1.2
dscal fp 3642 10687 0.34 2608 1787 1.5
max u8 3151 8613 0.37 3032 3188 0.95
sum u8 10022 65864 0.15 8019 8559 0.94
sum u16 10756 109866 0.10 8788 11256 0.78

Table 5. Final performance on Sparc, 105 iterations, time in ms

the stack at each iteration. The scalar version manages to keep intermediate values
in registers. Inductions variables are not optimized in the vectorized code as aggres-
sively as in the scalar code. Those reasons explain why the floating point benchmarks
do not reach a better speedup.

Reduction kernels are impacted by another problem. An epilogue performs the
final reduction over the 8 or 16 elements of the vector result. This code is less
optimized than the loop body, and it impacts to total performance. Adding new
builtins for horizontal operations (like the sum of the elements of a vector) could
help the JIT compiler generate better code even for the epilogue.

5 Related Work

Bytecode formats and JIT compilers have existed for decades. CLI has recently
drawn a lot of attention. Many projects exist, both commercial and open source.
Microsoft proposed the .NET [16] framework. Mono [13] has been presented in Sec-
tion 3. ILDJIT [2] is a distributed JIT compiler for CLI. LLVM [11] is a compiler
infrastructure that defines a virtual instruction set suitable for sophisticated trans-
formation on object code.

The original work in the GCC auto-vectorizer has been presented by Nuzman
and Henderson in [17, 18]. They showed how the vectorizer algorithms can be imple-
mented in a target-independent way, and driven by the compiler machine model. In
their approach, the generated code is target-dependent, while in ours even the gen-
erated code is target-independent. We postpone the specialization to the run-time.

Leśnicki et al. [12] proposed to annotate the CLI bytecode with information to
help the run-time vectorizer. In that approach, the vectorization happens at run-
time, but the static compiler does the analysis and hints at the interesting loops.
However, marking all the relevant loops and variables with the appropriate and
usable information, while keeping legal CLI code, proved difficult. In this paper, we
propose to entirely apply the vectorization in the static compiler, and to possibly
revert to scalar code when necessary.

El-Shobaky et al. [9] also propose to apply the vectorization at run-time. They
unroll loops to duplicate loop bodies, and they modify the code selector of the
JIT compiler to group corresponding instructions using tree pattern matching tech-
niques. However only a small number of operators are supported, and the number of
additional rules in the code selector will grow rapidly when more complex patterns

- 58 -

are needed. The approach also suffers a number of limitations, as described in the
paper.

Vector LLVA [1] is similar to our approach, but for the LLVM instruction set.
However, in contrast to our proposal, the authors do extend the bytecode itself,
breaking the compatibility, and they do not investigate the behavior of vector code
on non-SIMD machines.

Clark et al. propose to rely on a simple dynamic translation mechanism to rec-
ognize the instruction patterns that can be vectorized (those patterns have been
produced by scalarizing the output of a vectorizing compiler). They are able to han-
dle data widths increases. The solution, however, is entirely in hardware and thus
limited in the size of the instruction window in which it can recognize patterns.

6 Conclusion

In this paper, we propose a scheme to reconcile platform neutral binary formats like
bytecodes, and the careful exploitation of SIMD extensions of instruction sets.

Our contribution is three fold: first, we added vectorization capability to the GCC
CLI backend and we made our developments publicly available. Second, we showed
that vectorized bytecode is a viable approach to deliver performance in the presence
of SIMD instructions while not incurring any penalty on non-SIMD instruction sets.
And third, we analyzed under what conditions the bytecode produced by the static
compiler can be efficiently executed on various processors. In particular, the JIT
compiler must guarantee that some basic optimizations will be run in order to not
to degrade the performance.

References

1. Robert L. Bocchino, Jr. and Vikram S. Adve. Vector LLVA: a Virtual Vector Instruction
Set for Media Processing. In VEE’06, pages 46–56, June 2006.

2. Simone Campanoni, Giovanni Agosta, and Stefano Crespi Reghizzi. A parallel dynamic
compiler for CIL bytecode. SIGPLAN Not., 43(4):11–20, 2008.

3. Nathan Clark, Amir Hormati, Sami Yehia, Scott Mahlke, and Krisztian Flautner.
Liquid SIMD: Abstracting SIMD hardware using lightweight dynamic mapping. In
HPCA’07, pages 216–227, Washington, DC, USA, 2007.

4. Marco Cornero, Roberto Costa, Ricardo Fernández Pascual, Andrea Ornstein, and
Erven Rohou. An experimental environment validating the suitability of CLI as an
effective deployment format for embedded systems. In Conference on HiPEAC, pages
130–144, Göteborg, Sweden, January 2008. Springer.

5. Roberto Costa, Andrea C. Ornstein, and Erven Rohou. CLI back-end in GCC. In
GCC Developers’ Summit, pages 111–116, Ottawa, Canada, July 2007.

6. Roberto Costa and Erven Rohou. Comparing the size of .NET applications with native
code. In 3rd Intl Conference on Hardware/software codesign and system synthesis, pages
99–104, Jersey City, NJ, USA, September 2005. ACM.

7. Koen De Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro, Mike O’Boyle, Dion-
isios Pnevmatikatos, Alex Ramirez, Pascal Sainrat, André Seznec, Per Stenström, and
Olivier Temam. High-Performance Embedded Architecture and Compilation Roadmap,
volume 4050 of LNCS, pages 5–29. 2007.

- 59 -

8. ECMA International, Rue du Rhône 114, 1204 Geneva, Switzerland. Common Lan-
guage Infrastructure (CLI) Partitions I to IV, 4th edition, June 2006.

9. Sara El-Shobaky, Ahmed El-Mahdy, and Ahmed El-Nahas. Automatic vectorization
using dynamic compilation and tree pattern matching technique in Jikes RVM. In
ICOOOLPS ’09: Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, pages 63–69,
New York, NY, USA, 2009. ACM.

10. Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual, February 2008.
11. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In CGO’04, Palo Alto, California, Mar 2004.
12. Piotr Leśnicki, Albert Cohen, Grigori Fursin, Marco Cornero, Andrea Ornstein, and

Erven Rohou. Split compilation: an application to just-in-time vectorization. In
GREPS’07, in conjunction with PACT, Braşov, Romania, September 2007.

13. The Mono Project. http://www.mono-project.com.
14. José M. Moya, Javier Rodŕıguez, Julio Mart́ın, Juan Carlos Vallejo, Pedro Malagón,

Álvaro Araujo, Juan-Mariano Goyeneche, Agust́ın Rubio, Elena Romero, Daniel Vil-
lanueva, Octavio Nieto-Taladriz, and Carlos A. López Barrio. SORU: A reconfigurable
vector unit for adaptable embedded systems. In ARC ’09: Proceedings of the 5th Intl.
Workshop on Reconfigurable Computing: Architectures, Tools and Applications, pages
255–260, 2009.

15. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

16. Microsoft .NET. http://www.microsoft.com/NET.
17. Dorit Nuzman and Richard Henderson. Multi-platform auto-vectorization. In CGO’06,

pages 281–294, Washington, DC, USA, 2006. IEEE Computer Society.
18. Dorit Nuzman and Ayal Zaks. Autovectorization in GCC – two years later. In GCC

Developers’ Summit, pages 145–158, June 2006.
19. Erven Rohou. Combining processor virtualization and split compilation for heteroge-

neous multicore embedded systems. In Emerging Uses and Paradigms for Dynamic
Binary Translation, number 08441 in Dagstuhl Seminar Proceedings.

20. Gabriele Svelto, Andrea Ornstein, and Erven Rohou. A stack-based internal represen-
tation for GCC. In GROW’09, pages 37–48, Paphos, Cyprus, 2009.

- 60 -

Compiler-controlled and Compiler-hinted

Voltage Scaling Approaches

Dmitry Zhurikhin1, Andrey Belevantsev1, Kirill Batuzov1,
Valery Ignatiev1, Roman Zhuykov1, and Semun Lee2

1 Institute for System Programming, Russian Academy of Sciences
{zhur,abel,batuzovk,rook,zhroma}@ispras.ru

2 Samsung Corp.
semun.lee@samsung.com

Abstract. This paper reports on the two approaches to dynamic volt-
age and frequency scaling (DVS) hinted by GCC and controlled by Linux
kernel. The first approach uses profiling information for marking DVS
regions which should be executed with lower frequency, while the ker-
nel does the actual switching on entry and exit of those regions, taking
into account possible switching requests from multiple processes. In the
second approaches, the kernel itself decides when and to what value the
frequency would be switched, and the compiler provides simple informa-
tion on behaviour of program regions. For both approaches, a light-weight
sampling-based profiling technique is developed. Results show some CPU
energy savings with both approaches, but not whole-system energy sav-
ings on the test boards used.

1 Introduction

In our previous work [14] we have evaluated some of the compiler techniques for
lowering the CPU energy consumption using GCC compiler, including compiler-
controlled voltage scaling (DVS), bit-switching minimization, and memory opti-
mizations. The most promising technique was found to be DVS, which provided
several per cent CPU energy savings in our testing and very small overall sys-
tem energy savings. However, the initial implementation of our DVS technique
had limitations, mainly a) being an intraprocedural transformation (and thus
considering neither interprocedural program regions nor any regions contain-
ing function calls as candidates for DVS) and b) not taking the multiprocess
environment into account.

We have conducted a research project that aimed at removing those lim-
itations. We have developed two DVS algorithms. One is a fully static inter-
procedural DVS approach (that is, a compiler controls the points of changing
frequency and the values on which it should be changed) that uses a kernel
manager for handling conflicts of queries for frequency changes between dif-
ferent processes. The other DVS approach is implemented in the kernel as a
cpufreq governor that uses compiler-provided information for making decisions
on DVS (a so-called “mixed” approach). We have also developed a light-weight

- 61 -

sampling-based profiling mechanism that is used in both approaches for devising
the needed information.

The rest of the paper is organized as follows. Section 2 describes the static
DVS approach together with the devised profile support. Section 3 reports on
the mixed DVS approach. Section 4 provides experimental results. Section 5
concludes.

2 Static Interprocedural DVS Operating in Multiprocess

Environment

The developed static DVS algorithm is based on the algorithm in [3] and its
implementation in our previous work [14]. We will shortly highlight the main
stages of the algorithm for clarity. The basic idea of the algorithm is to divide
a program into single-entry/single-exit (SESE) regions and to estimate their
execution time on each frequency from profiling data. Then, given that we know
CPU power consumption on each frequency from hardware specifications, and we
know frequency switching latency from experiments, we can assign any execution
frequency for each region and still we will be able to estimate the total time and
energy needed to execute the program. Therefore, this data is enough to solve
the optimization problem of finding the set of regions that provides the lowest
energy consumption while meeting some deadline on execution time.

Our implementation in [14] operates on a single function at a time and con-
sists of the following stages:

1. Construct basic regions and combined regions. A basic region is just a basic
block or a loop, while a combined region is a SESE region made from basic
regions.

2. For every basic region, profile overall execution time at each available pro-
cessor frequency, T (R, f), and the number of times a region is executed,
N(R).

3. Estimate T (R, f) and N(R) for combined regions3.
4. Find the best region (basic or combined) and its execution frequency using

which minimizes CPU energy consumption and does not increase running
time above given threshold (controlled by user).

5. Insert frequency switching commands at the entry and the exit of the selected
region.

Compared to [14], we have improved the following parts of the algorithm:
building program regions suitable for DVS (more combined regions are consid-
ered suitable); finding the regions which will be executed with lower frequency
(a set of regions is considered instead of a single region); profiling mechanism (a
light-weight sampling-based profiling is used); and working in multiprocess envi-
ronment (by handling queries for switching frequency from different processes in
the kernel). We will expand on these improvements in the following subsections.

3 N(R) is taken from the basic region that is at the entry of the combined region R.
T (R, f) is computed as sum of T (BR, f) over all basic regions BR that form the
combined region R.

- 62 -

2.1 Building Program Regions Suitable for DVS

The original intraprocedural implementation did not allow us to handle regions
with calls, such regions were not considered for optimization. In this paper, static
DVS optimization is implemented as an interprocedural pass in GCC, so we have
removed this restriction.

We build regions in two stages. The basic regions for each function are built
during early local passes and stored in struct function (GCC per-function
data). The reason for this is that the basic regions are actually profiled, so their
construction should happen at the moment when profiling information is read.
The actual optimization needs to see regions from all functions, so it happens in
an interprocedural pass later in the compiler pipeline.

In this pass, the combined regions are built for each function as SESE regions
(i.e. region body should be dominated by entry and postdominated by exit of the
region) whose blocks all belong to previously constructed basic regions. These
basic regions are allowed to contain calls. A combined region still may not cross
function boundaries though, as this was not implemented. However, combined
regions from all functions are merged in a single array, so that the solving part
of the DVS optimization can consider all regions at once.

It can be noted that constructing basic regions at one point of the compiler
pipeline and using them for optimization at another point creates the problem
of keeping the regions consistent between the two passes. This problem is solved
similarly to the problem of updating profile information: when control flow is
modified through the GCC cfghooks.c API, that is, when a basic block is
created, deleted, added to or removed from a loop, or merged with another
block, the information about basic region is updated accordingly. We have also
written a verifier to check the region consistency that is called when control flow
is modified.

2.2 Finding The Best Set of Regions to Perform DVS

We choose the set of regions on which we need to change frequency in an in-
terprocedural pass, after constructing combined regions of all functions in a
translation unit. The problem we solve is as follows. We consider two available
frequencies for program execution, maximum and minimum. Let us consider T
as the extra time we can use for program execution (calculated as p% slowdown
on execution time using the maximum frequency) and n program regions. Each
region has weight wr, calculated as the extra time needed to execute the pro-
gram using the minimum frequency and the latency of switching frequency, and
value vr, calculated as the energy saved when the region is executed on the mini-
mum frequency4. Now the problem of choosing the optimal set of regions can be
formulated as a 0-1 knapsack problem. However, there is additional restriction
on regions when operating in interprocedural mode: some regions may intersect
with each other (e.g., a region containing a call and a region in the callee), and
the regions we are choosing may not intersect.

4 We only consider regions with vr > 0 and wr < T .

- 63 -

We have implemented two algorithms for solving our problem. The first al-
gorithm is a simple greedy algorithm. We sort the regions based on vr/wr ratio
and we choose regions starting from the one with the lowest ratio. We add a
region to the set when it does not intersect with the regions that are already in
the set and when their total weight does not exceed T . If a region does not meet
these conditions, we consider the region with the next best ratio. The final set
is found when we process all regions.

The second algorithm is a backtracking algorithm that is used in case of small
number of regions to find the optimum solution. We sort the regions in ascending
order by weights and then in descending order by values, and we assign indexes
to the regions according to the resulting order. On each step, we try to add the
next region to the candidate set considering only regions with indexes greater
than the ones already in the set. When the current region intersects with some
of the candidate set regions, we process the next region in the sort order. When
adding the current region to the set the total set weight will exceed T , we don’t
process next regions as due to the sort order they will be too costly. In this case,
and also when the last region is processed, we backtrack by removing the region
with the largest index from the set and proceeding with adding the next region.
When we have succeeded in adding the region, we remember the current best
solution and proceed to the next region. In addition, we prune the search space
by backtracking immediately when adding all remaining regions to the set will
not provide better solution than the current best solution.

We can also model the intersecting regions by considering the graph G whose
vertexes correspond to program regions and whose edges connect a pair of regions
which do not intersect. Then a set of regions eligible for switching frequency will
form a clique in G, and our goal will be to find a clique whose vertices have
the maximum sum of values while having the sum of weights not greater than
T . One of the possible solutions to this problem can be found in [5]. We did
not implement this approach, as it is not obvious it would provide much better
solutions for our tasks.

2.3 Handling Recursive Functions

We need to make some additional efforts to handle regions that contain calls to
recursive functions. As the call graph may be incomplete, and it also may have
indirect calls, we may fail to detect recursive calls (i.e., loops in the call graph)
during compilation time. To solve this issue, we have created wrappers around
instructions for changing frequency, which are added to libgcc. For each region,
we compute its hash based on the source file name, the function name, and the
region number. When calling the wrapper, we store the region hash and the call
depth. The frequency is lowered when the depth equals to zero, then with each
subsequent request having the region hash equal to the stored one the depth is
increased. The frequency is raised back when the depth equals to one and the
region hash equals to the stored one.

- 64 -

2.4 A Sampling-based Profiler

The initial profile mechanism for DVS implemented in [14] turned out to be too
heavyweight, so the DVS optimization basically worked using incorrect data.
We have developed a lighter profiler based on kernel timer interrupts. The in-
strumented program and the kernel communicate via shared memory. When
the program starts, it requests a shared memory region from the kernel via the
ioctl call. The shared memory holds a stack of currently executing DVS re-
gions. When entering region R, its ID is pushed to the stack. When leaving R,
region IDs are popped from the stack until the ID of R is removed. This allows
gathering correct statistics in case we haven’t tracked some region exits. When a
timer interrupt occurs, all region counters that are currently stored on the stack
are updated. When the program is finished, the resulting sample data is written
on disk so that GCC can parse it later.

There is a problem of constructing a proper region ID. As we noted, a region
is identified by a source file name, a function name, and a region number. We
would like to fit the ID in a 32-bit number. However, as we need some space
for the function name and the region number, it would be hard to hash the file
names so that the hash function values will fit in the remaining space, so with a
large program (several hundred files) the collisions in detecting the regions could
very probably happen. To avoid this situation, we use a counter of compiled
translation units as a hash, stored in a separate file and incremented once per
compilation. Of course, this cannot be used in a production GCC, as this leads
to differences in code generation of the same file compiled several times.

Last thing to note here is that the profiling info for basic regions is up-
dated together with them between the early local pass of constructing basic
regions/reading profile information and the interprocedural pass of performing
the DVS optimization.

2.5 Handling DVS Requests from Multiple Processes

In a multiprocess environment, it is possible that the requests on frequency
change from several DVS processes will conflict. For this case, we have imple-
mented the mechanism of changing frequency as a modification of ondemand

governor of cpufreq instead of directly calling the wrappers added to libgcc.
The ondemand governor measures the periods of idle CPU and the periods of
executing useful code. When the ratio of these values exceeds certain threshold,
the CPU frequency is raised; when it is below another threshold, the frequency
is lowered, otherwise it is left unchanged.

We have modified the ondemand governor so that when a DVS program ex-
ecutes the region that should work on the lower frequency, the manager consid-
ers its execution time as idle CPU, so that the decision of lowering frequency
becomes more probable. The communication between the program and the ker-
nel happens through shared memory similarly to the profiling mechanism. The
choice of communicating with the kernel or using direct frequency changing calls
(i.e. pure static DVS) is controlled by a GCC option.

- 65 -

3 A Compiler-hinted Mixed DVS Approach

A mixed DVS approach is based on the idea that the CPU frequency control
should be done in an OS kernel dynamically, while using information about
program execution that can be gathered statically by a compiler. We have begun
our work by studying a number of state-in-the-art mixed DVS approaches. Since
most of these approaches are aimed at real-time systems, we couldn’t follow
them exactly as we don’t expect to have so much information about the running
application. Instead we have decided to enhance one of the pure online algorithms
with using additional information from the compiler.

The following subsections will provide more details about the related work
in mixed DVS approaches and Linux power management, our Linux kernel al-
gorithm, and our compiler algorithm.

3.1 Related Work on Mixed DVS

We will present two mixed DVS approaches that are most interesting to us. The
approach proposed by Azevedo et al. [1] is based around checkpoints. A check-
point is a special place in the program’s code marked with a label. It serves
as a point where the calculations of the needed CPU frequency are done. Dur-
ing program compilation the program time constraints are set for the execution
of the code regions between checkpoints, in terms of acceptable lower and up-
per bounds. Such information is stored in a special checkpoint database, along
with the possible checkpoint transitions derived from the program control flow.
Similarly to our approach, the program is profiled and run in order to get rep-
resentative data on its power consumption.

The actual CPU frequency scaling takes place during program execution and
can be done either by OS or by the code inserted at the checkpoints by the
compiler. The main idea of the scaling phase is to generate at each checkpoint a
list of events5 that may arise later when executing the program. Based on this
list, the upper frequency bound6 and the optimum frequency7 are computed, and
the frequency found is set accordingly. The drawbacks of this approach are that
it doesn’t take into account the additional power and time that are needed to
calculate the new CPU frequency and to set it, and that the approach was only
tested on a simulator. At the same time, the algorithm in [1] provides the flexible
way of specifying desired time and power properties of the compiled program.

The other approach by AbouGhazaleh et al. [2] is similarly divided into
two stages, offline and run-time. Initially, the data on program execution is
collected during profiling. At the offline stage this data is used to compute when

5 An event contains a list of next possible checkpoints.
6 The bound shows the maximum CPU frequency that should be set in order to save

any power.
7 The optimal frequency is the CPU frequency that should be set in order to satisfy

time constraints of all next possible checkpoints (i.e., the event list).

- 66 -

and how frequently the power management points8 (PMPs) will be called. Also,
during the offline phase the program is instrumented with power management

hints9 (PMHs). Each PMH consists of the compiler inserted code that computes
the worst-case remaining cycles starting from the current PMH location to the
program end. This value may vary dynamically based on the executed path for
each run. For example, the remaining cycles at a PMH inside the function body
are dependent on the path from which the function is called.

During run-time, a PMH computes and passes dynamic timing information to
the OS in a predetermined memory location which holds the most recent value of
the estimated worst-case remaining cycles. Periodically, a timer interrupt invokes
the OS to execute the PMP code, so the OS adjusts the CPU frequency based on
the latest value and the remaining time to the program deadline. The drawback
of this approach, common with the previous one, is that they are aimed at real-
time systems, so they could not be used directly as such.

3.2 Power Management in Linux

There are three widespread approaches to Linux power management:

– implemented as a stand-alone application or a daemon, e.g. CPUSpeed [6]
or Open Hardware Monitor [7] projects;

– implemented as a stand-alone module or a patch for the kernel, e.g. the
Dynamic Power Management project [8] or the approaches based on pre-2.6
Linux kernels;

– implemented as a governor of cpufreq, which is the Linux kernel module
that controls the CPU frequency added in the 2.6 kernel version.

At present, the Linux kernel contains five simple CPU frequency governors:
userspace, which allows the user to set any desired supported frequency; powersave,
which automatically sets minimum supported CPU frequency; performance,
which sets maximum supported CPU frequency; ondemand, which is an interval-
based dynamic CPU frequency scheduler10, increasing the CPU frequency when
the calculated load is more than 80% and decreasing it when the load is less
than 20%; and conservative, which is very close to the ondemand governor,
but it makes its decision also looking at the load of previous intervals. All these
governors are implemented as modules and depend on the cpufreq module. This
allows loading/unloading the governor modules and switching between them at
runtime.

There are three canonical DVS algorithms proposed in [10], which are OPT,
FUTURE, and PAST. The first two are impractical as they are able to look into

8 A power management point shows the moments of time when the OS makes a deci-
sion on the new CPU frequency.

9 The hints allow the OS to estimate the time remained until program ends; they are
used by the CPU frequency manager.

10 The ondemand governor calculates the CPU load on the last time interval as the sum
of the run times of all tasks from the last interval divided by the interval length.

- 67 -

the future of the trace data and are used for reference purposes only. The latter
is a practical variant formulated as a result of experiments with the former two.
OPT is an unbounded-delay perfect-future algorithm that uses available energy
in an optimal way by stretching the run times in a trace to fill all available idle
time. While the algorithm is simple, it is unfeasible as it doesn’t care when a
specific job completes as long as it does so before the end of the total time span of
the trace. As a result, OPT can produce large delays in jobs’ run time and cannot
give adequate response to real-time events. FUTURE is a modification of OPT
that can only look into the future by a small window of the next allocated time
interval. Energy consumption is optimized within the window while making sure
no work is delayed past the end of the window. FUTURE approaches OPT in
terms of energy savings for large windows, while for small ones its energy savings
are small as well. The other advantage of this algorithm is that no response is
delayed past the end of the window giving good real-time response in the case
of small window sizes. The PAST algorithm uses a window in the past instead
of looking into the future. PAST assumes that the workload in the next window
will be the same as the previous one. As with FUTURE, the window size can be
adjusted to give different performance results. Its performance has subsequently
been evaluated as relatively good even compared to newer and more sophisticated
algorithms [9].

The AVGn algorithm by Pering et al. [11] computes an exponential moving
average of the previous windows. Again, the idea is that the workload of the next
time interval is expected to be similar to the previous ones. AVGn improves on
the three similar algorithms that predict workload by searching for patterns
in the past CPU utilization, hoping that more intelligent heuristics will lead
to larger energy savings. The CYCLE algorithm is based on the idea that the
CPU utilization may be structured in a cyclical pattern of interleaved peaks and
valleys, a phenomenon that is observed often on CPU utilization graphs. When
the algorithm finds such cycles in the past intervals, it sets the CPU speed such
that the amount of work needed with any excess cycles still left can be completed
within the next window. When no pattern can be found, the load is predicted to
be constant11. PATTERN is a generalization of the CYCLE method meant to
detect any kind of pattern in the load level data of the previous intervals. When a
match is found, the load of the next interval is predicted to be the same as that
of the interval following the previous occurrence of the sequence. Finally, the
PEAK algorithm looks in the past for high peaks of activity interspersed with
more stable plains. Its prediction uses several heuristics based on the expectation
of narrow peaks.

The other more advanced approaches for controlling the CPU frequency are
usually aimed at special types of system load, e.g. when practically just media
applications are run. Such approaches present good results on corresponding
workflows, hence it is useful to know which types of load and kinds of applications
are expected for the target system.

11 The constant is given as a parameter to the algorithm.

- 68 -

Surprisingly, performance results of the described algorithms do not indicate
that the more complex heuristics outperform the simpler algorithms. According
to simulations in [9] and [12], the AVGn algorithm with its simple averaging
performs best of all, while CYCLE, PATTERN, and PEAK approaches are only
slightly better than PAST. Most of the described algorithms are implemented
and evaluated for the Linux kernel during the project YADDA [13].

3.3 Linux Kernel Part of Our Mixed DVS Approach

We have implemented our mixed DVS approach as a new cpufreq governor
called mixeddvs using performance measurement counters similarly to [4]. When
the governor is active, programs compiled with the support of this mixed DVS
will provide it with their status to guide its decisions. When such program is
executed, first it communicates with the governor via the ioctl call. The kernel
then allocates a hunk of shared memory for the program and registers its process
in the list of so-called controlled tasks, also starting the hardware counters if this
is the first controlled process.

The majority of the work of the kernel manager is done at the periods of
process scheduling, when the previous process (which just left the CPU) and the
next process (which is going to be executed) are known. If the previous process
is the controlled one, the kernel reads the hardware counters’ values and the
shared memory values. The hardware counters’ events are CCNT12, INSTR13, and
DCM14. The shared memory value is REGTPI, an average time for executing a single
instruction on the maximum CPU frequency. It is profiled at the compilation
stage and then is written to the shared memory via the instrumentation code.

Based on these values and on available slack time for slowdown, the kernel
manager selects the new CPU frequency to be used when the previous controlled
process will be executed next time. First, the slack time is modified as follows:
slack-time -= CCNT/Fcur - INSTR · REGTPI/Fmax · (100 + pf

loss
)/100, where Fcur

is the current CPU frequency, Fmax is the maximum CPU frequency, and pf
loss

is the percent of allowed slowdown. The first part of the right-hand side of the
formula shows the CPU time actually spent by a program, while the second part
shows the CPU time the program would have spent (on the maximum CPU
frequency), also increased by the slowdown percent. The difference shows the
CPU time15 used by the task that is above the slowdown percent. When the
resulting slack time is too low or too high, the manager selects the maximum
or the minimum CPU frequency accordingly, otherwise it looks at the hardware
counters’ values to find whether the currently executing region is good for DVS
or not. We have tried several heuristics on this step, and we have found out that
the relative number of data cache misses, DCM, works good. So, the lower or the
higher CPU frequency is selected when DCM is high or low accordingly.

12 A number of CPU cycles passed from the last counter reset.
13 A number of ARM instructions executed from the last counter reset.
14 A number of data cache misses.
15 This time is positive when the process has used lower CPU frequency previously and

negative otherwise.

- 69 -

When the new CPU frequency value is found, it will be used next time when
the previous controlled process will be executed. The maximum CPU frequency
is used for the previous process otherwise and also for the next process when it
is not controlled. The only exception is when the process execution time is low,
which is usual for daemons or short processes. The current CPU frequency will
be kept then so that the number of the CPU frequency transitions will be lower.
When the controlled process finishes or otherwise ends unexpectedly, it signals
the kernel (again via ioctl) to free its data and the allocated shared memory.

The performance slowdown threshold is controlled in several ways. When
selected, the mixeddvs governor creates a file called performance loss in the
cpufreq root directory. The value stored in the file represents the slowdown
threshold that the new processes will have. It is also possible to set this value for
the given program during compilation via the special option and the parameter.

3.4 GCC Part of Our Mixed DVS Approach

The GCC compiler part we used for the mixed DVS approach implementation
is based on our previous work in Section 2. The profiling workflow is practically
the same except that the single run on the maximum CPU frequency is needed
for gathering data. This information includes REGTPI values for each region. The
region REGTPI is low when it is CPU bounded and no memory stalls are present;
when REGTPI is relatively high, then large number of memory stalls were en-
countered during region execution, so it is probably efficient to lower the CPU
frequency on the region. REGTPI values are calculated by the kernel using CCNT

and INSTR events pretty much the same way as with sampling-based profiling
described in Section 2.4.

When the profiling results are used on the second compilation, GCC inserts
the instrumentation code into the program, including the ioctl calls to allo-
cate/free the kernel shared memory and the storing of REGTPI values of the DVS
regions to the shared memory. As it is hard to predict the time of the next
process scheduling, and as several DVS regions could be executed since the last
process scheduling, the compiler also inserts code that averages REGTPI’s over all
executed DVS regions from the previous process scheduling.

4 Experimental Results

We have implemented both our approaches in GCC version 4.3.1 and Linux ker-
nel version 2.6.24. We have evaluated our DVS optimizations (both static and
mixed) together with the common cpufreq governors on the Aburto test suite,
which represents many common scientific applications. The following measure-
ment scheme was used. The CPU governor was set to the needed one before the
test was run and then the powersave governor was set right after the test finish.
Measurements were done during the same equal time for each run of the test.
The average static power consumption of the test board was subtracted from
the resulting power meter value.

- 70 -

Test results are shown in Table 1. Here, time is the actual run time of
the test and is shown in seconds; energy is the CPU energy consumed during
the measurement and is shown in mWh; the percent values show the differ-
ence between the given value and the performance column value. Performance,
powersave, ondemand, mixed, and offline columns represent the runs with
the maximum/minimum CPU frequency set, the kernel DVS approach, and our
mixed and offline (with kernel manager) DVS approaches accordingly. The last
two approaches had a slowdown threshold of 20%. Only some of the Aburto
test programs are shown; other tests showed no significant differences in their
run-time behavior.

performance powersave ondemand offline mixed

time energy time energy time energy time energy time energy

heapsort val 63 6.7 87 4.3 63 7 67 6.7 69 5.8
% 0 0 -38.1 35.82 0 -4.48 -6.35 0 -9.52 13.43

nsieve val 56 5.8 65 3.3 58 5.8 66 3.4 59 5.1
% 0 0 -16.07 43.1 -3.57 0 -17.86 41.38 -5.36 12.07

sim val 132 15.1 219 9.7 133 15.4 212 14.3 180 12.8
% 0 0 -65.91 35.76 -0.76 -1.99 -60.61 5.3 -36.36 15.23

tfftdp val 82 10.12 132 6.77 82 10.16 82 10.15 97 9.42
% 0 0 -60.98 33.1 0 -0.4 0 -0.3 -18.29 6.92

whets val 164 21.1 323 15.2 164 21.7 194 19.5 202 20.4
% 0 0 -96.95 27.96 0 -2.84 -18.29 7.58 -23.17 3.32

madmp3 val 169 9.2 169 7.7 169 7.7 169 7.4 169 7.5
% 0 0 0 16.3 0 16.3 0 19.57 0 18.48

Total val 666 68.02 995 46.97 669 67.76 790 61.45 776 61.02
% 0 0 -49.4 30.95 -0.45 0.38 -18.62 9.66 -16.52 10.29

Table 1. Evaluation results.

The results show that the mixed DVS approach is able to save 10.3% CPU
energy on average while slowing down execution on 16.5% in average, while the
offline DVS approach is able to save 9.7% CPU energy at the cost of 18.6%
slowdown.

5 Conclusions

We have completed our work by improving the static DVS approach over the
one proposed in [14] by making it an interprocedural pass in GCC and via im-
plementing a light-weight sampling-based profiling for receiving its data; and by
making it interprocess via implementing a kernel manager for handling its re-
quests. We have also implemented the mixed DVS approach as the new cpufreq

governor using the data gathered via the similar sampling-based profiling and the
shared memory for communication between the program and the Linux kernel.

- 71 -

We have evaluated both static and mixed DVS approaches. The results show
that the mixed DVS approach is able to save 10.3% CPU energy on average while
slowing down execution on 16.5% on average, while the offline DVS approach
is able to save 9.7% energy at the cost of 18.6% slowdown. These results show
some CPU energy consumption reduction, but not the whole-system energy con-
sumption reduction. We believe that either the approaches should be evaluated
on the real mobile devices, where the ratio of the CPU energy consumption to
the whole system energy consumption will be larger, or they will be useful for
the future devices with multicore CPUs that will again have the above ratio
increased compared to the current one.

References

1. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A.
Nicolau. Profile-Based Dynamic Voltage Scheduling Using Program Checkpoints.
In Proceedings of the Conference on Design, Automation and Test in Europe, March
2002, IEEE Computing Society.

2. N. AbouGhazaleh, D. Moss, B. R. Childers, and R. Melhem. Collaborative Op-
erating System and Compiler Power Management for Real-Time Applications. In
ACM Trans. Embed. Comput. Syst., vol 5, 1, Feb. 2006, pp. 82-115.

3. C. Hsu. Compiler-Directed Dynamic Voltage and Frequency Scaling for CPU Power
and Energy Reduction. Doctoral Thesis, Rutgers University, 2003.

4. K. Choi, R. Soma, and M. Pedram. Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance Trade-Off Based on the Ratio of Off-
Chip Access to On-Chip Computation Times. In Proceedings of the Conference on

Design, Automation and Test in Europe, Volume 1, February 2004.
5. A. Massaro, M. Pelillo, and I. M. Bomze. A Complementary Pivoting Approach

to the Maximum Weight Clique Problem. SIAM J. on Optimization 12, 4 (Apr.
2002), pp. 928-948.

6. CPUSpeed kernel module. http://www.carlthompson.net/Software/CPUSpeed
7. Open Hardware Module. http://ohm.freedesktop.org
8. Dynamic Power. http://dynamicpower.sourceforge.net
9. D. Grunwald, C. B. Morrey, P. Levis, M. Neufeld, and K. I. Farkas. Policies for

Dynamic Clock Scheduling. In Proceedings of the 4th Conference on Symposium on

Operating System Design and Implementation, Volume 4, San Diego, California,
October 2000.

10. M. Weiser, B. Welch, A. Demers, and S. Shenker, S. Scheduling for Reduced CPU
Energy. In Proceedings of the 1st USENIX Conference on Operating Systems Design

and Implementation, Monterey, California, November, 1994.
11. T. Pering, T. Burd, and R. Brodersen. The Simulation and Evaluation of Dynamic

Voltage Scaling Algorithms. In ISLPED ’98: Proceedings of the 1998 international

symposium on Low power electronics and design, pp. 76-81, 1998.
12. K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed-

setting of a Low-power CPU. In Mobile Computing and Networking, pp.13-25, 1995.
13. The YADDA project. http://www.eecg.toronto.edu/∼tamda/csc2228
14. D. Zhurikhin, A. Belevantsev, A. Avetisyan, K. Batuzov, and S. Lee.

Evaluating power-aware optimizations within GCC compiler. Presented on
GROW’09 workshop, January 2009, http://www.doc.ic.ac.uk/∼phjk/GROW09/

papers/06-PowerBelevantsev.pdf.

- 72 -

Using Software Metrics to Evaluate Static Single

Assignment Form in GCC

Jeremy Singer1, Christos Tjortjis2,3, and Martin Ward4

1 University of Manchester, UK
jsinger@cs.man.ac.uk

2 University of Ioannina, Greece
3 University of Western Macedonia, Greece

4 De Montfort University, UK

Abstract. Over the past 20 years, static single assignment form (SSA)
has risen to become the compiler intermediate representation of choice.
Compiler developers cite many qualitative reasons for choosing SSA.
However in this study, we present clear quantitative benefits of SSA,
by applying several standard software metrics to compiler intermediate
code in both SSA and non-SSA forms. The average complexity reduc-
tion achieved by using SSA in the GCC compiler is between 32% and
60% according to our software metrics, over a set of standard SPEC
benchmarks.

1 Introduction

Static single assignment form (SSA) is a popular compiler IR. Since the formu-
lation of SSA in the late 1980s [9] it has rapidly become the de factor standard
IR for code analysis and optimization.

In terms of research compiler infrastructures, SUIF [17], Microsoft’s Bartok
[11] and Phoenix, IBM’s Jikes RVM [6], and LLVM all use SSA-based interme-
diate forms. Several commercial compilers have recently been released as open-
source. Among these, Java HotSpot (originally from Sun) and Open64 (originally
from SGI) use SSA. Although Intel’s C compiler is not open-source, it has been
reported to make heavy use of SSA-based optimizations [34]. Regarding the open-
source GNU Compiler Collection (GCC), its development began before SSA was
well-characterized or widely known. However SSA support has been backported
into the original optimization infrastructure [31, 32], as of version 4.0. Thus we
see that many compilers, from a wide variety of vendors, for a diverse range of
source programming languages and target architectures, use SSA.

Despite its popularity and many anecdotal success stories, there has been
little previous work on formal evaluation of the reasons for SSA’s advantages in
static analysis and optimization. This paper employs software metrics to provide
a quantitative evaluation of the comparative merits of SSA. We aim to make our
observations as general as possible, by avoiding any restrictions or assumptions
that are specific for systems, analyses or optimizations.

- 73 -

The major contribution of this paper is in the previously unchartered area
of program meta-analysis, which concerns the analysis of properties of program
analysis tools and techniques. The paper provides a quantitative assessment of
the benefits of SSA in an analysis-independent manner, by means of software

metrics. It shows with several standard measures that an SSA representation of
a procedure has reduced complexity in relation to a non-SSA representation of
the same procedure, in GCC. The average complexity reduction is between 32%

and 60% for selected complexity metrics, over a set of representative benchmark
programs.

2 Program Representations

A control flow graph (CFG) is a static representation of possible flows of execu-
tion in a procedure. The CFG form is the basis for almost all classical (pre-SSA)
intra-procedural data flow analysis techniques. For full details, consult compiler
textbooks [1] [28] [30].

The conversion from CFG to SSA involves systematic renaming of variables.
The key property of SSA is that each variable in the program must have a unique
(hence single) definition point (hence assignment) in the program text (hence
static). In order to achieve this, it is necessary to generate new variable names
at definition points, and propagate these new names to all uses reached by that
definition. At control-flow merge points reached by several definitions of a vari-
able, it may be necessary to insert pseudo-assignments (known as φ-functions) to
merge explicitly these renamed variable definitions into a new variable. In SSA
form, each unique variable definition must dominate all uses of that variable.

SSA is perceived to improve data flow analysis, since: (1) it decreases the
size of def-use chains; and (2) it enables finer-grained variable-specific data flow
information.

A def-use chain links a variable definition with all its uses. It is an additional
data structure alongside a CFG, encapsulating variable data flow in the program.
For instance, if there are 10 definitions of variable x which can reach a control
flow merge point, followed by 10 uses of x, then every definition can reach every
use. This means there are 100 data flow links for x. In the SSA version of the
program, there are just 20 data flow links: 10 from the definitions to the φ-
function at the merge point, and 10 from the φ-function to the uses. Thus SSA
can be seen to simplify def-use chains. Many authors extol this virtue of SSA
and its consequent effect on splitting live ranges [10, 5, 19, 29, 4].

SSA enables effective sparse data flow analysis: Data flow information can
be associated with a variable globally, rather than at each specific control flow
point in the program [38]. Hasti and Horwitz assert that SSA encodes control
flow information directly into variable names, which means that flow-insensitive
analysis of SSA is as accurate as flow-sensitive analysis in certain cases [13].

Thus it is commonly recognised that SSA gives some advantages over the
CFG. Research papers on SSA generally provide comparative evaluations of
CFG versus SSA for a single data flow problem, compiler optimization or system;

- 74 -

for example [2]. However as far as we are aware, the current paper is the first

to address the general issue of why SSA is better than CFG in generic and
quantitative terms.

3 Software Metrics

This section describes the various metrics we use, and how we adapt these metric
definitions for SSA. Our objective is to use software metrics to measure the
differences between CFG and SSA representations of a program. So this means
that absolute metric values are not important; we are only concerned with the
relative values for CFG and SSA representations of same program.

The main novelty of our approach is that we apply software metrics to com-

piler IR code rather than to human-generated, high-level source code. Although
previous work has analysed auto-generated code of various kinds [37, 36, 25] this
is the first application of software metrics to compiler IR code. We expect this is
due to the limited interaction between the software metrics and program analysis
research communities.

This section focuses on intra-procedural metrics. SSA and CFG are intra-
procedural representations. Although inter-procedural versions exist [23, 35] they
are not in widespread use.

Since the CFG and SSA representations of a procedure share the same control
flow structure, we cannot use control flow metrics like cyclomatic complexity
[24] to compare them. Instead, we must concentrate on metrics that depend on
variable naming conventions. Note that we are considering compiler variables
(sometimes known as temporaries or virtual registers), rather than source code
variables.

3.1 Size Metric

We measure a procedure’s size by the number of basic blocks in the graph, i.e. |B|
for a CFG (B,E, bentry, bexit). This size metric is more appropriate for graph-
based IRs than the most common metric: source lines of code. Note that a
procedure will have the same size in both SSA and non-SSA forms.

In SSA program analysis, computational complexity measures are generally
size related. For a program of size n, the time complexity of the standard SSA
transformation algorithm is O(n2). The number of SSA variables and number of
φ-functions are also O(n2).

3.2 Halstead Metrics

Halstead’s complexity metrics [12] were originally developed to measure the com-
plexity of program modules directly by analysis of source code. They are among
the earliest software metrics. The Halstead measures are based on four integer
values:

1. n1—the number of distinct operators

- 75 -

2. n2—the number of distinct operands
3. N1—the total number of operators
4. N2—the total number of operands

In our case, we take operands to be virtual registers in the compiler IR
code, and operators to be instructions and pseudo-instructions. Appendix A
gives a full description of how we interpret operators and operands in our metric
calculations.

From these four basic values, five complexity metrics are derived, as shown
in Table 1.

Table 1. Table of Halstead Complexity Metrics

Measure Formula

Program length N = N1 + N2
Program vocabulary n = n1 + n2
Volume V = N ∗ (log

2
n)

Difficulty D = (n1/2) ∗ (N2/n2)
Effort E = D ∗ V

Measurements n1 and N1 concern number of operators. These numbers will
be identical for CFG and SSA programs if we exclude φ-functions from consid-
eration.5 Therefore the only differences occur with n2 and N2, which concern
the names of operands. n2 should change from CFG to SSA, since it measures
number of distinct operands. On the other hand, N2 should remain unchanged,
since SSA only renames existing operands and does not introduce new instruc-
tions. (Again, we exclude φ-functions from consideration.) Generally n2 will be
greater for SSA than CFG, which means that SSA volume V should be larger
than CFG, and SSA difficulty D should be smaller than CFG. Since the volume
increase is logarithmic, whereas the difficulty decrease is linear, the overall SSA
effort E should also decrease in relation to CFG effort.

A high effort score is undesirable; it means that a program module is diffi-
cult to understand and maintain. Section 5.1 presents our empirical results for
analysis using these Halstead metrics.

3.3 Information Flow Complexity Metric

Henry and Kafura present the information flow complexity metric (IFC) [15] as
a system-level design metric. It provides a measure of the information that flows
between the various modules in a system. In the original study [15] it was applied
to source code modules in UNIX. IFC has since been used for system specification

5 We consider this to be reasonable, since φ-functions are only copies rather than real
computational operations. A simple copy instruction does not count as an operator,
so neither does a φ-function.

- 76 -

studies [18] and iterative software design [16]. IFC is often used at a lower level
than system modules; it is very commonly used to quantify information flowing
between source-level procedures in a program [21]. IFC was deemed to be a
measure that could be used to ‘produce reliable software’ enshrined in IEEE
Standard 982.2.

IFC depends on the amount of information flowing into a module, known as
fanIn, through parameters and reads of global data structures. IFC also depends
on the amount of information flowing out of a module, known as fanOut, through
return values and writes to global data structures. Finally IFC depends on the
length of the module. The original formula for calculating the IFC for a module
is given in equation 1.

IFC = length ∗ (fanIn ∗ fanOut)2 (1)

A high IFC score for a module is undesirable. Long modules, and those
involved in lots of information flows have high IFC. The message of the original
paper is that high IFC indicates lack of maintainability. Lots of cross-module
dependencies make it difficult to change the system. This is similar to the more
recent notion of coupling in object-oriented software development [7].

In this study, we adopt IFC to measure the complexity of individual basic
blocks, at an intra-procedural level. Although it does not seem that Henry and
Kafura’s Information Flow metric is immediately applicable here, we re-interpret
the SSA representation (rather than modify the metric) to make the application
straightforward.

Procedural information flow relies on measuring number of input and output

variables in each procedure. This simply equates to parameters as inputs and
return values as outputs in most high-level languages. A single procedure in SSA
can be viewed as a collection of smaller functions in a call graph, where each basic
block from the original procedure now corresponds to a function in the call graph.
Kelsey [20] and Appel[3] give the details of this transformation. They argue that
SSA is a form of functional programming. Each basic block from the original
procedure now becomes a function. Upwardly exposed uses (variables used in a
basic block that are not previously defined in that same block) become input
parameters. Variables whose definitions in this basic block reach to other blocks
(variables that live on exit from this basic block) become output parameters.
We transform our SSA procedures into these kinds of functional programs, then
apply the IFC metric to each function.

Recalling the definition of IFC from equation 1, we now need to clarify how
to evaluate it on a given function.

– The length is the number of operations in the function, which should corre-
spond to the instructions in the original basic block.

– The fanIn is the number of input parameters for the function, which should
correspond to the number of upwardly exposed variable uses in the original
basic block.

- 77 -

– The fanOut is the number of output parameters for the function, which
should correspond to the number of variables live on exit from the original
basic block.

We aim to compute IFC scores for basic blocks in CFG and SSA IRs, and
compare them. To make this comparison, we analyse functions with their SSA
variable names to measure fanIn and fanOut, and to compute IFC. Then we re-
move subscripts from the SSA variable names to recover an approximation to the
original CFG variable names. Then we measure fanIn and fanOut for these CFG
variables, and compute IFC scores for the functions with CFG variable names.
Section 5.2 presents our empirical analysis using the IFC metric. Appendix B
gives full details of the IFC calculation.

IFC enables us to measure variable re-use. In SSA, variable names are an
infinite resource; we instantiate a new variable name at each definition point in
the program text. This is not generally the case in standard CFG code. The
CFG representation allows variable recycling, since it does not have a strict
renaming scheme like SSA. We say that CFG variable recycling occurs when
several definitions are multiplexed onto the same name. Sometimes this is due
to higher level programmer concerns, for example the definitions all relate to the
same concept, such as currentTemperature. On the other hand, the recycling
may be entirely co-incidental, for example the programmer (or compiler) re-
uses a tmp variable as a place-holder for a non-trivial arithmetic expression.
However variable re-use can reduce precision in data flow analysis, particularly
for flow-insensitive data flow analysis. Less variable re-use should make data flow
analysis easier, so IFC scores somehow act as a measure of data flow analysis
complexity. We want to compare the IFC metrics for programs in SSA and CFG
representations.

4 EXPERIMENTAL INFRASTRUCTURE

All intermediate code used in our experimental analysis is generated by the
GNU Compiler Collection (GCC) version 4.2.1, running on x86-64 Linux. The
SSA form for each procedure is extracted with the -fdump-tree-ssa flag. This
code is set to be optimized at the -O3 level, however the SSA dump occurs before
most of the optimization takes place. We construct the equivalent CFG code by
simply eliding SSA variable subscripts and φ-functions.

We create custom perl scripts to analyse the GCC-generated SSA dumps. Our
scripts extract the key parts of each SSA dump, namely operators and operands
in each basic block, without needing to parse the entire debug dump information.
This partial parsing is accomplished using techniques based on island grammars

[27]. We treat each GCC virtual operand as a variable, in our metrics. We treat
each GCC machine operation as an operator, in our metrics. Appendix A gives
a full description of the metrics calculations.

The programs to be analysed are the C language programs in the integer
section of the SPEC CPU 2000 benchmark suite [14]. Table 2 summarises the

- 78 -

procedural properties for each benchmark. Sizes are measured in terms of num-
ber of distinct basic blocks in each procedure. This measure is invariant of the
CFG/SSA transformation. Note that the 176.gcc benchmark is by far the largest
in terms of number of procedures to analyse; it also has the largest single pro-
cedure.

Table 2. Table of SPEC benchmarks used in experiments, with details of their proce-
dure sizes

benchmark # procs proc size
min max mean

164.gzip 67 1 148 27.6
175.vpr 175 0 547 29.9
176.gcc 1807 1 1821 46.1
181.mcf 26 1 106 20.2

186.crafty 39 1 370 60.0
197.parser 323 1 435 27.3
254.gap 698 1 204 29.2

255.vortex 499 1 213 17.5
256.bzip2 74 1 214 17.8
300.twolf 190 1 409 47.3

5 Analysis

This section reports on several metric comparisons between CFG and SSA, using
the software metrics described in Section 3 and the tools described in Section 4.

5.1 Halstead Effort Comparisons

This investigation studies the relative difference in Halstead effort between CFG
and SSA versions of the each procedure.

The average ratio of SSA effort to CFG effort can be computed by dividing
the total SSA effort for all 3893 procedures by the total CFG effort for the
same procedures. In effect, this is an arithmetic mean, where each procedure’s
contribution is weighted by its original CFG effort. Such a calculation generally
rewards reductions for higher effort procedures, since these can cause greater
efficiency savings. This average SSA:CFG ratio is computed as 0.63, which means
that the SSA effort is 37% lower than the CFG effort.

Figure 1 shows how the CFG to SSA Halstead effort ratio changes with
program size. Again note the logarithmic scale on the x-axis. Each procedure
is denoted by a single (x, y) point, where x is the procedure size and y is the
CFG:SSA effort ratio. Points above the line y = 1 indicate that the procedure
has a lower complexity in SSA than in CFG form. The majority of points fall

- 79 -

above y = 1. The curve shown on the graph is a linear best-fit computed by
linear least-squares regression. This best-fit curve indicates that the magnitude
of the complexity reduction for SSA transformation increases with procedure
size.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 10 100 1000 10000

C
F

G
:S

S
A

 r
at

io
 fo

r
H

al
st

ea
d

ef
fo

rt
 m

et
ric

size

Fig. 1. Correlation of CFG:SSA Halstead effort ratios with procedure size

We report the reduction in total effort for each benchmark program as a result
of the SSA transformation. For a single benchmark b, this value is computed by
summing the CFG Halstead effort scores for all procedures in b, then summing
the SSA Halstead effort scores for all procedures in b, then reporting the relative
value of the sum of SSA scores in relation to the sum of CFG scores. Thus
a relative value of 1.0 means the SSA transformation does not affect Halstead
complexity, for this benchmark. A relative value below 1.0 means that the SSA
transformation reduces the Halstead complexity, for this benchmark. Figure 2
shows these results. The Halstead effort is reduced by the SSA transformation,
for all benchmarks. As shown in the graph, the geometric mean of the complexity
ratio is 0.68, which means that the average complexity reduction for a SPEC
benchmark program in SSA form is 32%, according to Halstead’s effort metric.

5.2 Information Flow Complexity Comparison

The final investigation studies the relationship between IFC scores for SSA and
CFG versions of each basic block in each procedure.

From our set of benchmarks, there are 3893 procedures. The total number
of basic blocks over all these procedures is 141513. We adjust the IFC metrics

- 80 -

 0

 0.2

 0.4

 0.6

 0.8

 1

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

ge
om

ea
n

S
S

A
 e

ffo
rt

 r
el

at
iv

e
to

 C
F

G
 e

ffo
rt

Fig. 2. Reduction in Halstead Effort after the SSA transformation (smaller is better).

scores by adding one to each individual score. This avoids problems with zero
values when we compute SSA:CFG ratios and plot log-scale graphs.

The mean SSA:CFG ratio for IFC over all analysed basic blocks is 0.91.
Figure 3 shows the results. There is one (x, y) point for each basic block. The
x-axis gives the adjusted IFC score for the SSA version of a basic block; the
y-axis gives the adjusted IFC score for the corresponding CFG version. Note
that 90% of basic blocks have the same IFC score for both IRs. Where there is
a difference, then the CFG score is always higher than the SSA score. Thus all
points are on or above the line y = x. Note the logarithmic scales on both axes
in this graph.

We had expected more than 10% of the basic blocks to have lower IFC for
SSA than for CFG. The reason for this low proportion is that: (i) many basic
blocks are extremely small and simple, so there is no difference between the
CFG and SSA forms; and (ii) in the GCC compiler, the CFG creation phase is
allowed to use unlimited virtual operands, like SSA creation (although without
the possibility of φ-functions). As Cooper and Torczon explain [8] this is an
attempt to reduce incidental sharing. However, there is still some reuse that can
only be eliminated by transformation from CFG to SSA.

There are several interesting trends in the graph in Figure 3. For instance,
some basic blocks have an IFC score of zero for SSA; although such scores are
adjusted to one for reasons mentioned earlier. This anomaly generally occurs be-
cause the SSA fanOut score for these basic blocks is zero, implying that there are
no outgoing live variables from the blocks in SSA. Such blocks define only global
variables. Due to issues of pointer aliasing and inter-procedural optimization, the
GCC variant of SSA gives each use of a global variable a separate subscripted
virtual operand name. Thus definitions of global variables (marked with the VDEF

- 81 -

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
F

G
 IF

C
 s

co
re

 (
+

1)

SSA IFC score (+1)

Fig. 3. Comparison of Information Flow Complexity scores for basic blocks in SSA and
CFG forms

pseudo-operation in GCC’s SSA form) appear to be defining variables that are
never used. Thus the fanOut is computed to be zero. It is legitimate to ques-
tion whether this interpretation of IFC is fair. We argue that the answer is yes,
since separate subscripts enable data flow disambiguation, which makes it easier
to analyse inter-procedural data flows for global variables. In contrast, the CFG
representation does not split namespaces for global variables, so inter-procedural
analysis is correspondingly less efficient or effective.

For the 10% of basic blocks that have greater IFC for CFG than SSA, in some
cases the CFG IFC score is orders of magnitude greater, due to the squared term
in the IFC equation.

As with Halstead effort above, we also report the reduction in metrics scores
for each individual benchmark program as a result of the SSA transformation.
For a single benchmark b, this value is computed by summing the CFG IFC scores
for all basic blocks in b, then summing the SSA IFC scores for all basic blocks in b,
then reporting the relative value of the sum of SSA scores in relation to the sum
of CFG scores. Thus a relative value of 1.0 means the SSA transformation does
not affect IFC. A relative value below 1.0 means that the SSA transformation
reduces IFC. Figure 4 shows these results. The IFC metric is reduced by the
SSA transformation, for all benchmarks. The geometric mean of the SSA:CFG
complexity ratio is 0.4, which means that the average complexity reduction for
a SPEC benchmark program in SSA form is 60%, according to the IFC metric.

Note that the complexity reduction is most dramatic for 176.gcc and 254.gap.
These benchmarks have several data structure initialization procedures with

- 82 -

extremely long basic blocks. The long blocks have high CFG fanOut scores but
significantly lower SSA fanOut scores. The squared term in the IFC equation
accounts for the massive difference in total complexity.

 0

 0.2

 0.4

 0.6

 0.8

 1

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

ge
om

ea
n

S
S

A
 e

ffo
rt

 r
el

at
iv

e
to

 C
F

G
 e

ffo
rt

Fig. 4. Reduction in Information Flow Complexity after the SSA transformation
(smaller is better).

6 Discussion

The analyses in Section 5 show that the translation of a program from CFG to
SSA generally reduces its complexity according to two standard metrics.

1. The average per-benchmark Halstead effort metric is 32% lower.
2. The average per-benchmark IFC metric is 60% lower.

Low scores for Halstead and IFC metrics usually indicate well-constructed
and easily maintained code. This observation is conventionally applied to high-
level source code, where low metrics values indicate that the code should be
straightforward for programmers (or software analysis tools, e.g. [22]) to under-

stand and modify. We argue that the same observation may be applied to low-
level intermediate code, where low metrics values indicate that the code should
be straightforward for compilers to analyse and optimize. Therefore, given the
results of our metrics-based analyses in Section 5, we conclude that SSA code
is easier for compilers to optimize than equivalent CFG code. Intuitively, SSA-
based optimization is simpler and more elegant.

- 83 -

The experience of the compiler construction community harmonizes with
such a conclusion. They also observe that SSA facilitates better compiler analysis
and optimization passes. For instance, Muchnick [28] states:

SSA . . . simplifies and makes more effective several kinds of optimiz-
ing transformations, including constant propagation, value numbering,
invariant code motion and removal, strength reduction, and partial re-
dundancy elimination.

Again, compiler researchers prefer SSA over CFG because SSA introduces
more local variables, which can lead to more precise data flow information being
associated with each variable. This is especially true for flow-insensitive analy-

sis, where one unit of data flow information is stored for each variable globally;
which contrasts with flow-sensitive analysis, where there are Nv units of data
flow information for each variable v (one for each of the Nv locations where v is
in scope). For example, Hasti and Horwitz [13] show that the SSA transforma-
tion makes flow-insensitive pointer analysis as accurate as flow-sensitive analysis
in some cases. Our metrics-based analysis reinforces this intuition: that SSA is
superior to CFG because it has more variables. Halstead’s effort metric captures
this property, since the effort score is inversely proportional to the number of
unique variable names (n2). The original motivation is that information is as-
sumed to be spread uniformly over all the variable names, which makes it easier
analysis to generate precise information about a single name when there are
more variable names.

Some members of the compiler community raise the objection that SSA adds
overhead to the IR, not only due to the expanded vocabulary but also because
of the many φ-function insertions required. To quote Muchnick [28] again:

The occasional large increase in program size is of some concern in us-
ing SSA form but, given that it makes some optimizations much more
effective, it is usually worthwhile.

This is clearly a valid concern; there is some baggage that comes with SSA. How-
ever as Muchnick states, the benefit outweighs the cost in general. This tradeoff
is obvious in the Halstead metrics. The volume metric increases with the CFG
to SSA transformation, due to the extra infrastructure. However the difficulty

metric decreases due to the increased vocabulary. As observed in Section 3.2,
difficulty decreases at a faster rate that volume increases; so the effort (which is
the product of volume and difficulty) also decreases in general.

Another common qualitative justification for SSA is that it localises data
flows, due to aggressive live range splitting [5, 33]. This reduces accidental sharing
of variable names. It means that variable optimizations may have fewer global
side-effects. In SSA, data flow optimizations can often occur at the peephole
optimization level due to the localization of data flows. Our new interpretation
of the IFC metric (at the basic block level) quantifies this localization. Our
analysis shows that the CFG to SSA transform does reduce static data flow
dependences between basic blocks.

- 84 -

We note one caveat from our analyses. As mentioned earlier, the GCC trans-
lator from high-level source code to CFG intermediate code (known as the gim-

plifier [26, 31]) is allowed to introduce unlimited new variable names. Although
the CFG IR does not have the single assignment property before its conversion
to SSA, it often has simplified live ranges in relation to the original high-level
program. Thus our metrics-based complexity reduction from CFG to SSA should
be treated as a lower bound. If the gimplifier did not introduce large numbers
of new variable names, then the complexity reduction would be even greater for
SSA.

However perhaps this would not be a fair evaluation of CFG, since its variable
naming convention is often far from naive. For instance, Cooper and Torczon [8]
motivate and describe their CFG-based variable naming scheme for a 1980’s
FORTRAN compiler before they became aware of SSA:

Unfortunately, associating multiple expressions with a single temporary
name obscured the flow of data and degraded the quality of the opti-
mization. The decline in code quality overshadowed any compile-time
benefits. Further experimentation led to a short set of [variable renam-
ing] rules that yielded strong optimization while mitigating growth in
the name space. . . . The compiler used these rules until we adopted SSA
form, which has its own naming discipline.

In a similar way, the CFG intermediate code generation process in GCC does
some principled variable renaming. Nevertheless, no matter how much variable
renaming is applied to CFG; apart from the SSA constraint, there is still poten-
tial for unnecessary inefficiency in compiler analyses.

So, if it were needed, this paper provides clear quantitative evidence to en-
dorse the adoption of SSA in GCC.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2nd edn. (2006)

2. Amme, W., von Ronne, J., Franz, M.: Quantifying the benefits of ssa-based mobile
code. Electronic Notes in Theoretical Computer Science 141(2), 103–119 (2005)

3. Appel, A.W.: SSA is functional programming. ACM SIGPLAN Notices 33(4), 17–
20 (Apr 1998)

4. Braun, M., Hack, S.: Register spilling and live-range splitting for SSA-form pro-
grams. In: Proceedings of the International Conference on Compiler Construction.
Lecture Notes in Computer Science, vol. 5501. Springer (2009)

5. Briggs, P.: Register allocation via graph coloring. Ph.D. thesis, Rice University
(1992)

6. Burke, M.G., Choi, J.D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M.J.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The jalapeño dynamic optimizing com-
piler for java. In: Proceedings of the ACM 1999 Conference on Java Grande. pp.
129–141 (1999)

7. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

- 85 -

8. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann (2004)
9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient

method of computing static single assignment form. In: Proceedings of the 16th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
pp. 25–35 (1989)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (Oct 1991)

11. Fitzgerald, R., Knoblock, T., Ruf, E., Steensgaard, B., Tarditi, D.: Marmot: An
optimizing compiler for Java. Software: Practice and Experience 30(3), 199–232
(2000)

12. Halstead, M.H.: Elements of Software Science. Elsevier (1977)
13. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-

insensitive pointer analysis. In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 97–105 (1998)

14. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millen-
nium. IEEE Computer 33(7), 28–35 (2000)

15. Henry, S., Kafura, K.: Software structure metrics based on information flow. IEEE
Transactions on Software Engineering 7(5), 510–518 (1981)

16. Henry, S., Selig, C.: Predicting source-code complexity at the design stage. IEEE
software 7(2), 36–44 (1990)

17. Holloway, G.: The Machine-SUIF static single assignment library (2001), http:
//www.eecs.harvard.edu/hube/software/nci/ssa.html

18. Ince, D., Shepperd, M.: An empirical and theoretical analysis of an information
flow-based system design metric. In: Proceedings of the European Conference on
Software Engineering. Lecture Notes in Computer Science, vol. 387, pp. 86–99
(1989)

19. Johnson, R., Pingali, K.: Dependence-based program analysis. In: Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 78–89 (1993)

20. Kelsey, R.A.: A correspondence between continuation passing style and static single
assignment form. ACM SIGPLAN Notices 30(3), 13–22 (Mar 1995)

21. Laird, L.M., Brennan, M.C.: Software measurement and estimation: a practical
approach. Wiley (2006)

22. Lajios, G., Schmedding, D., Volmering, F.: Supporting language conversion by
metric based reports. In: Proceedings of the 12th European Conference on Software
Maintenance and Reengineering. pp. 314–316 (2008)

23. Liao, S.W., Diwan, A., Bosch, Jr., R.P., Ghuloum, A., Lam, M.S.: SUIF explorer:
an interactive and interprocedural parallelizer. In: Proceedings of the 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp.
37–48 (1999)

24. McCabe, T.: A complexity measure. Proceedings of the 2nd International Confer-
ence on Software Engineering (1976)

25. McDonald, P., Strickland, D., Wildman, C.: Estimating the effective size of auto-
generated code in a large software project. In: Proceedings of the 17th International
Forum on COCOMO and Software Cost Modeling (2002)

26. Merrill, J.: GENERIC and GIMPLE: A new tree representation for entire functions.
In: Proceedings of the First Annual GCC Developers’ Summit. pp. 171–179 (2003),
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf

27. Moonen, L.: Generating robust parsers using island grammars. In: Proceedings of
the Eighth Working Conference on Reverse Engineering. pp. 13–22 (2001)

- 86 -

28. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997)

29. Mycroft, A.: Type-based decompilation. In: Proceedings of the 8th European Sym-
posium on Programming. Lecture Notes in Computer Science, vol. 1576, pp. 208–
223. Springer (1999)

30. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(1999)

31. Novillo, D.: Tree SSA—a new optimization infrastructure for GCC. In: Proceedings
of the First Annual GCC Developers’ Summit. pp. 181–193 (2003), http://www.
airs.com/dnovillo/Papers/tree-ssa-gccs03.pdf

32. Novillo, D.: Design and implementation of Tree SSA. In: Proceedings of the Second
Annual GCC Developers’ Summit. pp. 119–130 (2004), http://www.airs.com/

dnovillo/Papers/tree-ssa-gcc2004.pdf
33. Quintão Pereira, F.M., Palsberg, J.: Register allocation by puzzle solving. In: Pro-

ceedings of the 2008 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. pp. 216–226 (2008)

34. Schouten, D., Tian, X., Bik, A., Girkar, M.: Inside the Intel compiler. Linux Journal
2003(106), 4 (2003), http://www.linuxjournal.com/article/4885

35. Staiger, S., Vogel, G., Keul, S., Wiebe, E.: Interprocedural Static Single Assignment
Form. In: Proceedings of the 14th Working Conference on Reverse Engineering.
pp. 1–10 (2007)

36. Succi, G., Liu, E.: A relations-based approach for simplifying metrics extraction.
Applied Computing Review 7(3), 27–32 (1999)

37. Ward, M., Bennett, K.: Formal methods to aid the evolution of software. Inter-
national Journal of Software Engineering and Knowledge Engineering 5(1), 25–47
(1995)

38. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems 13(2), 181–210 (Apr
1991)

A Operators and Operands in our Metrics Calculations

We have precise definitions of what constitutes an operator or an operand, for
the GCC intermediate code that we analyse. This allows us to apply the Halstead
metrics consistently to all procedures that we analyse.

Operands are real and virtual statement operands from GCC Tree SSA [32].
A real operand represents a single, non-aliased, memory location which is atom-
ically read or modified by a statement (i.e., variables of non-aggregate types
whose address is not taken). A virtual operand represents either a partial or
aliased reference (i.e., structures, unions, pointer dereferences and aliased vari-
ables).

Operators are basic GIMPLE three-address operators, as outlined in Table
3. Each operator takes in one or more operand values and performs a single
computational operation.

B Calculation of Information Flow Complexity Metric

The IFC metric value for a function (that was originally a basic block in an SSA
procedure) depends on three fundamental measures: length, fanIn and fanOut.

- 87 -

Table 3. GIMPLE operators

operator(s) description
[] array subscript

+, −, ∗, / arithmetic, pointer deref
&, |, ˜, ˆ logical
<<, >> shift

==, ! =, <, >, <=, >= comparison
case switch statement test

VUSE, VMAYDEF, VMUSTDEF,PHI Tree SSA pseudo-operators

The length is computed as the number of GIMPLE operators in the func-
tion. Since GIMPLE is a three-address code, there is generally one operator per
instruction.

Given a function f that is derived from original basic block b, the fanIn is
computed as the number of input parameters for f . There is one input parameter
to f for each variable that has an upwardly exposed use in b, whose variable
definition dominates b. Again, there is one input parameter to f for each variable
that is defined by a φ-function at the head of b. (Appel [3] explains how variables
defined on the left hand side of φ-functions become formal parameters in function
definitions, and variables used on the right hand side of φ-functions become
actual parameters in function calls.)

The fanOut for f is computed as the number of variables defined in f that are
used in another function, plus the number of return values for f . Note that some
functions define variables that are never used elsewhere. This may be because
the live range of such a variable is restricted that single function. Another reason
is that GCC has special virtual operands. Each aliased memory location has a
distinctly named virtual operand for every static occurrence of that location: i.e.
each aliased location has an associated virtual operand that is redefined at every
potential definition or use of that location. Such virtual operands may appear to
be defined and never used. Section 5.2 discusses how we handle such operands.

- 88 -

A New Intermediate Representation for GCC
based on the XARK Compiler Framework ?

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems

University of A Coruña, A Coruña, Spain
{jandion,arenaz,juan}@udc.es

Abstract. The automatic generation of efficient parallel code continues
to be a challenge for compiler technology. In the past, only the devel-
opers of applications targeted for supercomputers were aware of exploit-
ing the parallelism available in the hardware. Currently, the increase in
the number of cores available in commodity processors has generalized
the problem. Parallelizing compilers typically address automatic detec-
tion of parallelism through the analysis of a set of standard graphs that
capture information about the statements of the program. Well-known
examples are the Data Dependence Graph (DDG), the Control Flow
Graph (CFG) and the Dominance Tree (DT). This paper outlines a new
compiler intermediate representation (IR) intended to ease detection of
parallelism in sequential programs. In constrast to standard compiler
IRs that are based on the concept of program statement, the new IR
hinges on the concept of computational kernel provided by the XARK
compiler framework. Thus, a kernel represents a program construct that
is used frequently by programmers. Well-known examples are inductions,
reductions or recurrences. In addition, this paper presents several ideas
for using such kernel-level IR for the automatic generation of parallel
code for multi-core processors. An application from the SPEC CPU2000
benchmark suite is used as case study.

1 Introduction

Even for experienced programmers, the development and maintenance of pro-
grams that make an efficient use of the computer architecture is a complex
time-consuming task. The actual emergence and widespread use of multi-core
processors adds more complexity, as current compiler technology cannot gener-
ate efficient parallel code for multi-core processors, being the programmer re-
sponsible for exploiting the parallelism available in hardware.

Current optimizing and parallelizing compilers split programs into statements
that are represented as abstract syntax trees. In order to capture program be-
havior, the compiler builds an intermediate representation that consists of a
? This research was supported by the Ministry of Education and Science of Spain

and FEDER funds of the European Union (Project TIN2007-67537-C03) and by the
Galician Government (Project PGIDIT06PXIB105228PR)

- 89 -

set of standard graphs that connect program statements [1, 2, 10]. For instance,
the GCC compiler establishes relationships between GIMPLE-SSA statements
by building a control flow graph (CFG), a data dependence graph (DDG) or
a dominance tree (DT). Although this approach was shown to be effective in
practice for compilation of real codes for mono-core processors, the level of ab-
straction of statement-based IRs makes it difficult for the compiler to detect the
parallelism available in real applications.

The recognition of program constructs that are frequently used by software
developers (computational kernels, from now on) is a powerful mechanism to
detect parallelism automatically [4, 6–9]. XARK [5] is an extensible compiler
framework that provides a complete, robust and general solution to the prob-
lem of automatic recognition of computational kernels (inductions, reductions
or array recurrences), even in the presence of complex control flows.

This paper presents preliminary work on the proposal of a new kernel-based
IR and sketches an algorithm to guide automatic parallelization for multi-core
processors. As an illustrative case study, the full-scale application EQUAKE of
the SPEC CPU2000 benchmark suite is analyzed.

The rest of the paper is organized as follows. Section 2 describes the EQUAKE
application. Section 3 presents the XARK compiler framework and the collec-
tion of kernels recognized in EQUAKE. Section 4 sketches a new kernel-based
IR and describes the way it captures the behavior of EQUAKE as a whole.
Section 5 outlines a preliminary algorithm for the automatic parallelization of
EQUAKE targeting multi-core processors. Finally, Section 6 concludes the paper
and presents future work.

2 The Application EQUAKE of SPEC CPU2000

One of the applications of the SPEC CPU2000 benchmark suite is EQUAKE.
This program performs a simulation of seismic waves in large, highly heteroge-
neous valleys. EQUAKE is capable of recovering the time history of the ground
motion due to a specific seismic event everywhere within a valley. Computations
are carried out on an unstructured mesh which locally resolves wavelengths us-
ing a finite element method. The source code of EQUAKE consists of 1512 lines
grouped into 16 procedures. This relatively-small size allows us to analyze its
behavior manually in a reasonable amount of time. Our analysis of EQUAKE
revealed that the code contains a significant variety of the kernels that are used
frequently in practice.

For the sake of clarity, Figures 1 and 2 show only an excerpt of the main() and
smvp() procedures, respectively. Note that smvp() is the most costly routine of
the program. Approximately, it consumes more than 70% of the total execution
time and, therefore, it is a likely target for an optimizing compiler. The loop
fori of main() procedure (see Figure 1, lines 11–26) traverses the set of finite
elements in order to assemble the global simulation variables M and C using
the contribution of each finite element to the solution. In each fori iteration,

- 90 -

the individual contribution is computed and stored in the element matrices, for
instance, matrix Ce.

The output of EQUAKE is a report of the displacements at both the hypocen-
ter and epicenter of the earthquake for a predetermined number of simulation
timesteps. For this purpose, the loop nest foriter (Figure 1, lines 29–59) per-
forms a time integration. In each timestep, the displacement (3D array disp) is
computed using the values corresponding to the two previous timesteps and in-
volving several procedure calls at run-time (e.g., smvp()). The arrays computed
during the simulation phase (e.g., M and C) are used as input data. Once the
displacement disp has been computed, each foriter iteration finishes by calcu-
lating the velocity (2D array vel). The three variables disptminus, dispt and
disptplus are updated in a round-robin fashion (i.e., a circular swap) in each
iteration of foriter (see lines 54–58). These three variables are used to access to
the 3D array disp, which stores the results of EQUAKE in the current and the
previous two timesteps.

3 The XARK Compiler Framework

The XARK compiler framework [5] builds a hierarchical representation of a
program through the recognition of a comprehensive collection of kernels. It
decomposes the program into a set of mutually dependent kernels that capture
the behavior of a code fragment and provide the compiler with information
about the computations performed at runtime on scalar and non-scalar variables
(e.g., arrays, pointers). A detailed description of the collection of kernels can be
consulted in [5]. Next, we present the kernels that appear in EQUAKE:

– Regular assignment: Assignment of a new value to a set of elements of an
array variable following a regular access pattern, typically given by an affine
expression of a loop index. The computation of array vel in the time inte-
gration phase (Figure 1, lines 49–52), assigns a new value to each element
vel[i][j], being i and j affine expressions of the indices of the enclosing
loops fori and forj . Another example is the computation of array Ce in
each fori iteration during the simulation phase (Figure 1, lines 12–14).

– Regular reduction: The elements of an array variable are assigned a new
value that depends on the value already stored in the array element. The
elements updated in a regular reduction are determined by a regular access
pattern. The computation of array Ce in lines 16–17 of Figure 1 is a regular
reduction with a sum (+) reduction operation and a linear access pattern.
Another example is the computation of array disp[disptplus][*][*] in
the loop nest fori of lines 39–44 of Figure 1. In this case, the new value
disp[disptplus][i][j] depends on itself and on two different array ele-
ments disp[dispt][i][j] and disp[disptminus][i][j]. Note that in the
scope of fori, the variables disp[disptplus][*][*], disp[dispt][*][*]
and disp[disptminus][*][*] represent three 2D arrays that do not overlap
in memory.

- 91 -

1 double ∗∗M , ∗∗C , ∗∗M23 , ∗∗C23 , ∗∗V23 , ∗∗vel , ∗∗∗ disp , ∗∗∗K ;
2 int i , j , k , ii , jj , kk , iter , timesteps , disptplus , dispt , disptminus ;
3 double time , Ke [1 2] [1 2] , Me [1 2] , Ce [1 2] , alpha ;
4
5 /∗ I n i t i a l i z a t i o n phase ∗/
6 disptplus = 0 ;
7 dispt = 1 ;
8 disptminus = 2 ;
9

10 /∗ Simulation phase ∗/
11 for (i = 0 ; i < ARCHelems ; i++) {
12 for (j = 0 ; j < 12 ; j++) {
13 Me [j] = 0 . 0 ;
14 Ce [j] = 0 . 0 ;
15 }
16 for (j = 0 ; j < 12 ; j++)
17 Ce [j] = Ce [j] + alpha ∗ Me [j] ;
18 for (j = 0 ; j < 4 ; j++) {
19 M [ARCHvertex [i] [j]] [0] += Me [j ∗ 3] ;
20 M [ARCHvertex [i] [j]] [1] += Me [j ∗ 3 + 1] ;
21 M [ARCHvertex [i] [j]] [2] += Me [j ∗ 3 + 2] ;
22 C [ARCHvertex [i] [j]] [0] += Ce [j ∗ 3] ;
23 C [ARCHvertex [i] [j]] [1] += Ce [j ∗ 3 + 1] ;
24 C [ARCHvertex [i] [j]] [2] += Ce [j ∗ 3 + 2] ;
25 }
26 }
27
28 /∗ Time in t eg ra t i on phase ∗/
29 for (iter = 1 ; iter <= timesteps ; iter++) {
30 for (i = 0 ; i < ARCHnodes ; i++)
31 for (j = 0 ; j < 3 ; j++)
32 disp [disptplus] [i] [j] = 0 . 0 ;
33 smvp (ARCHnodes , K , ARCHmatrixcol , ARCHmatrixindex , disp [dispt] ,
34 disp [disptplus]) ;
35 time = iter ∗ Exc . dt ;
36 for (i = 0 ; i < ARCHnodes ; i++)
37 for (j = 0 ; j < 3 ; j++)
38 disp [disptplus] [i] [j] ∗= − Exc . dt ∗ Exc . dt ;
39 for (i = 0 ; i < ARCHnodes ; i++)
40 for (j = 0 ; j < 3 ; j++)
41 disp [disptplus] [i] [j] += 2 .0 ∗ M [i] [j] ∗ disp [dispt] [i] [j] −
42 (M [i] [j] − Exc . dt / 2 .0 ∗ C [i] [j]) ∗ disp [disptminus] [i] [j] −
43 Exc . dt ∗ Exc . dt ∗ (M23 [i] [j] ∗ phi2 (time) / 2 .0 +
44 C23 [i] [j] ∗ phi1 (time) / 2 .0 + V23 [i] [j] ∗ phi0 (time) / 2 . 0) ;
45 for (i = 0 ; i < ARCHnodes ; i++)
46 for (j = 0 ; j < 3 ; j++)
47 disp [disptplus] [i] [j] = disp [disptplus] [i] [j] /
48 / (M [i] [j] + Exc . dt / 2 .0 ∗ C [i] [j]) ;
49 for (i = 0 ; i < ARCHnodes ; i++)
50 for (j = 0 ; j < 3 ; j++)
51 vel [i] [j] = 0 .5 / Exc . dt ∗ (disp [disptplus] [i] [j] −
52 disp [disptminus] [i] [j]) ;
53
54 /∗ Circular swap ∗/
55 i = disptminus ;
56 disptminus = dispt ;
57 dispt = disptplus ;
58 disptplus = i ;
59 }

Fig. 1. Excerpt of the source code of the EQUAKE application.

- 92 -

1 void smvp (int nodes , double ∗∗∗A , int ∗Acol , int ∗ Aindex , double ∗∗v ,
2 double ∗∗w) {
3 int i ;
4 int Anext , Alast , col ;
5 double sum0 , sum1 , sum2 ;
6
7 for (i = 0 ; i < nodes ; i++) {
8 Anext = Aindex [i] ;
9 Alast = Aindex [i + 1] ;

10 sum0 = A [Anext] [0] [0] ∗ v [i] [0] + A [Anext] [0] [1] ∗ v [i] [1] +
11 + A [Anext] [0] [2] ∗ v [i] [2] ;
12 sum1 = A [Anext] [1] [0] ∗ v [i] [0] + A [Anext] [1] [1] ∗ v [i] [1] +
13 + A [Anext] [1] [2] ∗ v [i] [2] ;
14 sum2 = A [Anext] [2] [0] ∗ v [i] [0] + A [Anext] [2] [1] ∗ v [i] [1] +
15 + A [Anext] [2] [2] ∗ v [i] [2] ;
16 Anext++;
17 while (Anext < Alast) {
18 col = Acol [Anext] ;
19 sum0 += A [Anext] [0] [0] ∗ v [col] [0] + A [Anext] [0] [1] ∗ v [col] [1] +
20 + A [Anext] [0] [2] ∗ v [col] [2] ;
21 sum1 += A [Anext] [1] [0] ∗ v [col] [0] + A [Anext] [1] [1] ∗ v [col] [1] +
22 + A [Anext] [1] [2] ∗ v [col] [2] ;
23 sum2 += A [Anext] [2] [0] ∗ v [col] [0] + A [Anext] [2] [1] ∗ v [col] [1] +
24 + A [Anext] [2] [2] ∗ v [col] [2] ;
25 w [col] [0] += A [Anext] [0] [0] ∗ v [i] [0] + A [Anext] [1] [0] ∗ v [i] [1] +
26 + A [Anext] [2] [0] ∗ v [i] [2] ;
27 w [col] [1] += A [Anext] [0] [1] ∗ v [i] [0] + A [Anext] [1] [1] ∗ v [i] [1] +
28 + A [Anext] [2] [1] ∗ v [i] [2] ;
29 w [col] [2] += A [Anext] [0] [2] ∗ v [i] [0] + A [Anext] [1] [2] ∗ v [i] [1] +
30 + A [Anext] [2] [2] ∗ v [i] [2] ;
31 Anext++;
32 }
33 w [i] [0] += sum0 ;
34 w [i] [1] += sum1 ;
35 w [i] [2] += sum2 ;
36 }
37 }

Fig. 2. Source code of the smvp() procedure of the EQUAKE application.

– Irregular reduction: A reduction where the updated array elements are de-
termined by an indirection array. An example is the computation of M in
the simulation phase (Figure 1, lines 18–21), which uses an indirection array
ARCHvertex to determine the element of M updated in each iteration of fori

and forj .

The automatic recognition of computational kernels in full-scale real appli-
cation requires the development of an inter-procedural kernel recognition en-
gine. For this purpose, work in progress [3] focuses on the development of an
efficient inter-procedural Gated Single Assignment (GSA) form on top of the
GIMPLE-SSA infrastructure provided by GCC. GSA is an extension of the well-
known Static Single Assignment (SSA) form where reaching definition informa-
tion of scalar and array variables is represented syntactically. The construction
of GSA involves two main tasks: first, placement of special operators (called φ
generically) at the points of the program with multiple predecessors in the con-
trol flow graph; and second, renaming of program variables so that the left-hand
sides of the assignment statements define distinct unique variables. Different

- 93 -

kinds of φ operators are distinguished according to the point of the program
where they are inserted:

– µ(xout, xin), which appears at loop headers and selects the initial xout and
loop-carried xin values of a variable.

– γ(c, xtrue, xfalse), which is located at the confluence node associated with
a branch (e.g., if-endif construct), and captures the condition c for each
definition to reach the confluence node: xtrue if c is fulfilled; xfalse, if c is
not satisfied.

– α(aprev, s, e), whose meaning is that the element s of an array variable a is
set to the value e and the other elements take the values of the previous
definition of the array, denoted as aprev.

As shown in Figure 2, smvp() carries out an irregular reduction and stores
the result in the reduction array w, being Acol the indirection array and as-
suming that formal parameters A, v and w point to non-overlapping memory
locations. Note that the inter-procedural GSA form enables the recognition of
kernels through procedure calls. At the call site of lines 33–34 of Figure 1, the
actual parameters of smvp() are known to point to disjoint memory locations.
Thus, the recognition engine infers that smvp() computes an irregular reduction
on array disp[disptplus] within the main program.

4 A New Kernel-Based Intermediate Representation

In this section we propose a new kernel-based IR intended to expose coarse-
grain and fine-grain parallelism to the compiler. Standard IRs typically consist
of statement-based DDG, CFG and DT. In a similar manner, our new kernel-
based IR consists of a Kernel-based DDG (K-DDG) and a Kernel-based CFG
(K-CFG).

As mentioned in Section 3, XARK builds a hierarchical representation that
decomposes a program into a set of mutually dependent kernels. We call this
representation the K-DDG, whose nodes represent kernels and whose edges rep-
resent dependences between kernels. For illustrative purposes consider the graph
of EQUAKE presented in Figure 3. The nodes are depicted as ovals labeled with
the program variable that stores the results of the computation of the kernel, as
well as the type of kernel. On the one hand, the nodes Me and M of the simulation
phase capture two kernels: regular assignment and irregular reduction, respec-
tively. Note that kernels abstract the computations of a set of statements spread
over the program. For instance, kernel M contains three statements of the body of
loop forj (see Figure 1, lines 18–21). On the other hand, the edges capture the
kernel-level dependences that connect statements of different kernels (see edge
between kernels Me and M in Figure 3). Note that the remaining dependences
between statements of a kernel are not exposed to the compiler in the K-DDG
as they are represented in the type of kernel recognized by XARK.

The second graph of our new IR is the Kernel-based Control Flow Graph
(K-CFG). We propose a two-phase construction algorithm that first groups the

- 94 -

Fig. 3. Kernel-based IR of the source code of the EQUAKE application.

- 95 -

kernels (i.e., the nodes of the K-DDG) provided by XARK into execution scopes
and later searches for flow dependences between the kernels associated with each
execution scope. In the first phase, the execution scope of a kernel is computed
using the concept of region [1]. A region of a flow graph is a collection of nodes
N and edges E such that: (1) There is a header h in N that dominates all
the nodes in N ; (2) If some node m can reach a node n in N without going
through h, then m is also in N ; and (3) E is the set of all the control flow edges
between nodes n1 and n2 in N , except (possibly) for some that enter h. Note
that loop nests are often the most costly part of a program, thus being the most
appropriate candidates for a compiler to extract parallelism. In order to build
the K-CFG, the program is split into a hierarchy of loop regions that represent
the execution scopes and kernels are attached to execution scopes by executing
Algorithm 1. The inputs are the K-DDG provided by XARK and the CFG and
the DT provided by the GCC compiler. The algorithm determines the set of
basic blocks that contain each statement of a kernel K, excluding µ-statements
associated to loop headers. Next, the basic block bb dom that dominates the
remaining basic blocks in the set is computed. The γ-statements of the GSA
form assure that such basic block bb dom exists. Finally, the execution scope of
the kernel K is the innermost loop region that contains bb dom.

In the second phase, the kernel-level dependences of the K-DDG are classified
into flow or not flow dependences using Algorithm 2. For a kernel-level depen-
dence K1 → K2 to be a flow dependence, a dominate relationship between K1

and K2 must exist. Two cases are distinguished. In the first case, the execution
scopes R1 and R2 of K1 and K2 are checked. If R1 and R2 have the same parent
region and R1 precedes R2 in the hierarchy (see Algorithm 2, lines 4–5), then all
the statements of K1 are executed before any statement of K2. Thus, K1 → K2

is a flow dependence that assures that the results of K1 have been computed
before beginning the execution of K2.

In the second case, we assume that K1 and K2 are attached to the same
execution scope (R1 = R2), or that R1 and R2 do not have the same parent
region. In order to establish a flow dependence between K1 and K2, we need
to assure that all the statements of K1 dominate all the statements of K2 (see
Algorithm 2, lines 6–10). An example of this situation is shown below:

1 i f (c == 0) {
2 a = 5 ;
3 b = a + 3 ;
4 } else {
5 a = 2 ;
6 b = a + 1 ;
7 }

In this case, in each path of this if-then statement there is a pair-wise dominance
relation between the sentence that writes a and the sentence that writes b. Thus,
Algorithm 2 concludes that the kernel associated to a dominates the kernel
associated to b.

The resulting kernel-based IR for the EQUAKE program is shown in Figure 3.
In the K-CFG the nodes are grouped into execution scopes that represent the
loops of the code. For the sake of clarity, the execution scopes of the inner loops

- 96 -

Algorithm 1 Computation of the execution scopes.
Input: K-DDG, CFG, DT
1: foreach kernel K in the K-DDG do
2: bb dom = basic block of CFG that contains a stmt of K (excluding µ-stmt)
3: foreach statement stmt in K do
4: if stmt is not a µ-statement then
5: bb stmt = basic block of CFG that contains stmt
6: if bb stmt dominates bb dom then
7: bb dom = bb stmt
8: end if
9: end if

10: end for
11: K.execution scope = innermost enclosing loop region of bb dom;
12: end for

Algorithm 2 Detection of kernel-level flow dependences.
Input: K-DDG, K-CFG, CFG, DT
1: foreach kernel-level dependence K1 → K2 of the K-DDG do
2: R1 = execution scope(K1)
3: R2 = execution scope(K2)
4: if (R1.parent reg = R2.parent reg) & (R1 precedes R2 in the hierarchy) then
5: mark K1 → K2 as flow dependence
6: else if ∀s1 ∈ K1 ∃s2 ∈ K2 such that statements s1 and s2
7: belong to the same basic block in the CFG
8: and s1 precedes s2 in the DT then
9: mark K1 → K2 as flow dependence

10: end if
11: end for

of the time integration phase are not depicted in Fig. 3 (e.g., execution scope
of inner loop forj — lines 40–44 — in loop nest fori — lines 39–44 —). As
will be shown in the following section, this high-level representation abstracts
the implementation details of the computational kernels, enabling the compiler
to automatically detect the parallelism available in EQUAKE and to generate
parallel code for a multi-core processor.

5 Automatic Detection of Parallelism for Multi-Core
Processors

In general, the automatic parallelization of sequential codes involves two main
problems: first, detection and decomposition of a program into a set of tasks that
can be run in parallel; and, second, generation of parallel code for the underly-
ing hardware architecture. The kernel-based IR presented in Section 4 exposes
multiple levels of parallelism that range from parallelizable individual kernels
(intra-kernel parallelism) up to a kernel-level dependence graph bounded to ex-
ecution scopes (inter-kernel parallelism). Next, we outline a simple algorithm to

- 97 -

Algorithm 3 Task decomposition for multi-core processors.
Input: K-DDG, K-CFG
1: merge execution scopes with one kernel and one cross-boundary edge
2: d = 0
3: foreach execution scope R at depth d in the K-CFG do
4: if ∀ kernel K ∈ R such that K is parallelizable then
5: n drain kernels = number of kernels without outgoing edges in K-DDG
6: that cross the execution scope boundaries
7: if n drain kernels = P then
8: tasks = set of P drain kernels
9: else if n drain kernels < P then

10: tasks = split parallelizable drain kernels to create P tasks
11: else
12: tasks = merge drain kernels to create P tasks
13: end if
14: map tasks to different cores
15: end if
16: d++
17: end for

decompose a program into tasks using current (dual-, quad-, eight-core) multi-
core processors.

Algorithm 3 presents a pseudocode of the task decomposition strategy. The
analysis focuses on those coarse-grain execution scopes where all the kernels are
parallelizable, i.e, there exists a parallelizing code transformation targeted to
each kernel [4, 6–9]. The types of kernels found in the K-CFG of EQUAKE are
regular assignment, regular reduction and irregular reduction. Thus, all of these
execution scopes are analyzed by the task decomposition algorithm.

The simulation phase contains two kernels that lead to the creation of two
tasks: the first task corresponds to the execution of the kernels Me and M (see
subgraph TASK1 in Figure 3); the second task involves kernels Me, Ce and C
(see subgraph TASK2). If the target multi-core processor contains more than
two cores, then intra-kernel parallelism is exploited by applying parallelizing
transformations to the irregular reductions M and/or C as needed (see lines 9–10
in Algorithm 3). Note that, in general, this strategy replicates computations on
different cores (see kernel Me belonging to TASK1 and TASK2 in Figure 3).

The time integration phase cannot be executed before the simulation phase
finishes in order to prevent the violation of cross-boundary kernel-level depen-
dences (appropriate synchronization is needed). The time integration phase is
represented by six execution scopes, each containing one kernel. All of these six
kernels are connected by one kernel-level flow dependence. As a result, these
execution scopes are merged in order to expose a sequence of kernels to the com-
piler (see line 1 in Algorithm 3). Next, the kernel vel that lacks outgoing edges
is transformed into parallel code in order to create as many tasks as needed. For
illustrative purposes, assume that two tasks TASK3 and TASK4 are created (see
Figure 3). Each task computes a subarray of vel. Thus, in order to minimize

- 98 -

communication and synchronization, they must be assigned the computation of
the corresponding subarrays of disp. As a result, the tasks work in parallel with
memory locations that do not overlap. Finally, note that kernels with irregular
access patterns need to be transformed using an inspector-executor approach to
avoid communication and synchronization between the cores.

Overall, the strategy outlined in this section enables the detection of paral-
lelism within full-scale applications. The kernel-based IR (K-DDG and K-CFG)
naturally reflects the structure of the source code and, thus, avoids the violation
of the data dependences specified by the programmer.

6 Conclusions and Future Work

This paper is a first step towards the definition of a kernel-based IR that ex-
poses multiple levels of parallelism to the compiler. The new kernel-based IR is
inspired by standard statement-based IRs used in current optimizing compilers.
Thus, the K-DDG and the K-CFG are intended to provide a powerful frame-
work for the development of new full-scale automatic parallelization techniques.
The EQUAKE program of SPEC CPU2000 was used as case study to show the
potential of this approach.

As future work we intend to improve the K-CFG construction algorithm
and to run tests with well-known benchmark suites (e.g., SPEC, PERFECT). In
addition, we will address the development of an algorithm for task decomposition
that targets multi-core and many-core processors as well as GPU processors.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques
and Tools. Addison-Wesley (2006)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann (2001)

3. Arenaz, M., Amoedo, P., Touriño, J.: Efficiently Building the Gated Single Assign-
ment Form in Codes with Pointers in Modern Optimizing Compilers. In: 14th In-
ternational Euro-Par Conference (Euro-Par), Las Palmas de Gran Canaria, Spain.
LNCS, vol. 5168, pp. 360–369. Springer (2008)

4. Arenaz, M., Touriño, J., Doallo, R.: Compiler Support for Parallel Code Genera-
tion through Kernel Recognition. In: 18th International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, NM, USA. IEEE Computer Society
(2004)

5. Arenaz, M., Touriño, J., Doallo, R.: XARK: An eXtensible framework for Auto-
matic Recognition of computational Kernels. ACM Trans. Program. Lang. Syst.
30(6) (2008)

6. Callahan, D.: Recognizing and Parallelizing Bounded Recurrences. In: 4th Inter-
national Workshop on Languages and Compilers for Parallel Computing (LCPC),
Santa Clara, CA, USA. LNCS, vol. 589, pp. 169–185. Springer (1991)

7. Lin, Y., Padua, D.A.: On the Automatic Parallelization of Sparse and Irregular
Fortran Programs. In: 4th International Workshop on Languages, Compilers, and

- 99 -

Run-Time Systems for Scalable Computers (LCR), Pittsburgh, PA, USA. LNCS,
vol. 1511, pp. 41–56. Springer (1998)

8. Pinter, S.S., Pinter, R.Y.: Program Optimization and Parallelization Using Idioms.
ACM Trans. Program. Lang. Syst. 16(3), 305–327 (1994)

9. Setoain, J., Tenllado, C., Gómez, J.I., Arenaz, M., Prieto, M., Touriño, J.: Towards
Automatic Code Generation for GPU Architectures. In: 9th International Work-
shop on State-of-the-Art in Scientific Computing on GPUs (PARA), Trondheim,
Norway (2008)

10. Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley
(1996)

- 100 -

Transforming GCC into a research-friendly
environment: plugins for optimization tuning
and reordering, function cloning and program

instrumentation

Yuanjie Huang1,2, Liang Peng1,2, Chengyong Wu1

Yuriy Kashnikov4, Jörn Rennecke3, Grigori Fursin3

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 Graduate School of the Chinese Academy of Sciences, Beijing, China

3 INRIA Saclay, Orsay, France (HiPEAC member)
4 University of Versailles at Saint-Quentin-en-Yvelines, France

Abstract. Computer scientists are always eager to have a powerful,
robust and stable compiler infrastructure. However, until recently, re-
searchers had to either use available and often unstable research compil-
ers, create new ones from scratch, try to hack open-source non-research
compilers or use source to source tools. It often requires duplication of a
large amount of functionality available in current production compilers
while making questionable the practicality of the obtained research re-
sults. The Interactive Compilation Interface (ICI) has been introduced
to avoid such time-consuming replication and transform popular, pro-
duction compilers such as GCC into research toolsets by providing an
ability to access, modify and extend GCC’s internal functionality through
a compiler-dependent hook and clear compiler-independent API with ex-
ternal portable plugins without interrupting the natural evolution of a
compiler.
In this paper, we describe our recent extensions to GCC and ICI with
the preliminary experimental data to support selection and reordering of
optimization passes with a dependency grammar, control of individual
transformations and their parameters, generic function cloning and pro-
gram instrumentation. We are synchronizing these developments imple-
mented during Google Summer of Code’09 program with the mainline
GCC 4.5 and its native low-level plugin system. These extensions are
intended to enable and popularize the use of GCC for realistic research
on empirical iterative feedback-directed compilation, statistical collective
optimization, run-time adaptation and development of intelligent self-
tuning computing systems among other important topics. Such research
infrastructure should help researchers prototype and validate their ideas
quickly in realistic, production environments while keeping portability
of their research plugins across different releases of a compiler. More-
over, it should also allow to move successful ideas back to GCC much
faster thus helping to improve, modularize and clean it up. Furthermore,
we are porting GCC with ICI extensions for performance/power auto-
tuning for data centers and cloud computing systems with heterogeneous
architectures or for continuous whole system optimization.

- 101 -

1 Introduction and Related Work

The compiler is an essential part of modern computing systems responsible
for delivering best performing executables across a wide range of architectures
quickly and automatically while often satisfying multiple constraints such as
code size and compilation time.

Tuning default optimization heuristics of a compiler or optimizing a given
program for a given architecture is a tedious, repetitive, error prone, and time-
consuming process. In the past few decades, multiple techniques have been devel-
oped to improve, automate and speed up this process including empirical itera-
tive feedback-directed compilation [1–11], genetic algorithms and machine learn-
ing techniques [12–21], continuous optimization and run-time adaptation [22–28],
statistical collective optimization [29, 30] and many other popular methods.

In-house research compilers have been utilized in research for a long time
but it is often difficult or even impossible to reproduce their results in realis-
tic environments. Source to source transformation tools such as SUIF [31] and
ROSE [32] are also popular to prototype research ideas, however the former is
now heavily outdated while the latter is still rapidly evolving, not yet stable
enough and is missing some important functionality. We find such frameworks
useful for high-level source code manipulation, but we also found that they often
have complex interference with the internal optimization heuristics of the cou-
pled source-to-binary compiler making it difficult to analyze final experimental
results.

Production proprietary compilers are also regularly used for research. How-
ever, they have not been designed to enable prototyping of research ideas, and it
is not always easy or possible to access internals of such compilers. Moreover, it
is also often impossible to reproduce experimental results in academia without a
license. In such cases, researchers may only have access to global compiler flags
or some pragmas to tune applications, which may not always be suitable for
advanced experimentation.

The LLVM [33] compiler infrastructure also appeared recently targeting both
industry and academia, and providing a clear documented API, extension capa-
bilities, JIT, VM, etc. It is gaining popularity but it may still take a long time
to provide all available optimizations and support multiple architectures.

GCC [34] is an open-source production compiler that has also been used
in research for a while. However, its complexity, often undocumented inter-
nals and functions changing from one version to another, long learning curve,
rapid evolution, overheads due to frequent synchronization with the mainline
compiler and lack of easy extensibility have sometimes prevented it from be-
ing used in long-term research projects. Nevertheless, its advantages are very
mature and stable multiple front-ends, support for more than 30 families of
architectures, GPL license and wide-spread popularity. Moreover, the recently
added modular optimization pass manager, experimental polyhedral optimiza-
tions (GRAPHITE) and some elementary support for dynamic compilation using
CIL [35] and MONO [36] make GCC very attractive for realistic research on code
and architecture design and optimizations.

- 102 -

In order to remove some of the above listed disadvantages of production
compilers as a research infrastructure and make research developments more
portable, we started developing the Interactive Compilation Interface (ICI) [37]
to gradually open up compilers and provide access to their internal functional-
ity such as program analysis and optimizations necessary for multiple research
projects through a common API and external plugins. It allows quick prototyp-
ing of research ideas in a real production environment, potentially saving the
effort to build new compiler infrastructure from scratch, while keeping plugin
compatibility needed for long-term research projects during natural compiler
evolution. GCC maintainers may have some overhead to support such a plugin
system, however the GCC community can also benefit from successful research
ideas that can be moved back to the compiler immediately. Moreover, it may
eventually help to gradually clean up, modularize and document the previously
rigid compiler.

ICI has had several major evolutions since 2005 and has been used recently
in the long-term MILEPOST project (2006-2009) [19] to add feature extraction
passes and enable selection of global optimizations based on popular machine
learning techniques. At the beginning it was a compiler-dependent monolithic
plugin system, however recently we decided to separate it into 2 parts: low-level
compiler dependent plugin system and high-level compiler independent ICI made
as a library. The key idea is to update/modify low-level ICI plugin system for
different releases of a compiler while keeping high-level ICI reasonably stable to
ensure portability of research plugins. In this article, we present further exten-
sions to ICI made during the Google Summer of Code program (GSoC’09) to
provide generic function cloning, program instrumentation, pass reordering and
control of individual optimizations and their parameters. They are intended to
help continue research on various topics including empirical transparent collec-
tive optimization [29, 30], run-time program adaptation [25, 21] and code instru-
mentation, parallelization and scheduling for many-core systems [38, 39, 21].

In the last few years other plugin systems have been proposed and imple-
mented in GCC to enable program analysis, add new passes and control compi-
lation flow [40–42]. Finally, the common agreement has been reached and GCC
4.5 will feature the first common compiler-dependent plugin system. In such
case, we can simply substitute low-level compiler-dependent ICI with the native
plugin system while keeping high-level ICI compiler-independent that is very
important to researchers. We are currently synchronizing our low-level ICI with
the plugin system of GCC 4.5 to avoid further duplicate parallel developments.
Furthermore, if high-level ICI plugins become stable, they can be easily moved
inside the compiler with minimal changes.

The rest of the paper is organized as following: the next section introduces our
vision of GCC plugin-enabled research framework, followed by the description
of GSoC’09 extensions and some preliminary experimental results. Finally, we
briefly describe our attempt to synchronize ICI with the mainline GCC 4.5,
followed by a section of conclusions and future work.

- 103 -

2 GCC and collaborative research framework

Lo
w

 l
e

v
e

l
co

m
p

il
e

r-
d

e
p

e
n

d
e

n
t

In
te

ra
ct

iv
e

 C
o

m
p

il
a

ti
o

n
 I

n
te

rf
a

ce
 (

G
C

C
 f

o
r

e
x

a
m

p
le

)

a
n

d
/o

r

n
a

ti
v

e
 p

lu
g

in
 s

y
st

e
m

 (
G

C
C

 4
.5

)

Start compilation process ������GCC research platform

GCC original IP pass manager

Pass1

Pass2

PassN

������
…

GCC original function-level

pass manager

Function cloning pass

PassA

Unrolling pass

������
PassN

…

AST, CFG, internal

variables

Instrumentation

pass

MILEPOST program

feature extractor

Linking with

external libraries

Low-level fast ICI

compiler-dependent

native plugins ���	�
�� �
��
���	�
�� �
��

Collaborative R&D tools

(cTuning.org/ctools)

- automate code and architecture

optimization

- predict good optimizations

- improve research quality

Collective Optimization

Database
(cTuning.org/cdatabase)

- collect useful optimization cases

continuously from the community

- enable reproducibility of research

results

High-level compiler-independent Interactive Compilation Interface Library

(implemented as a compiler-dependent plugin - GCC in our case): ���������� ��� �������� �������� � �� ���! ����"���# ���!�$��� �# ������!������ �#������!� �%������ �# !������ ��������# &
Fig. 1. GCC with high-level compiler-independent and low-level compiler-dependent
ICI, and plugins as a research infrastructure connected with cTuning R&D tools and
collective optimization database.

We pursue two main goals trying to transform GCC into a research com-
piler. First of all, we would like to have a common stable extensible compiler
infrastructure shared by both academia and industry to improve the quality,
practicality and reproducibility of research, and make experimental results im-
mediately useful to the community. Second, we share the long-term vision of

- 104 -

the future adaptive self-tuning computing systems with the cTuning commu-
nity [43] and therefore continue adding new functionality to GCC with ICI to
enable statistical transparent collective optimization [29, 30]. The new ICI func-
tionality provides the ability to substitute the compiler inter-procedural and
function-level pass manager with arbitrary sequences of passes. It also includes
new passes for generic function-level (and loop-level in the future) cloning, pro-
gram instrumentation and MILEPOST extractor of static program features [19].
It is now possible to control some transformations such as unrolling individu-
ally. Finally, we added support for the XML data format in our GCC plugins to
standardize and simplify communication with cTuning tools. Figure 1 shows the
extended GCC with low-level compiler-dependent ICI (or native compiler plugin
system) and a high-level compiler-independent ICI (that itself is implemented as
a low-level plugin/library) connected to the cTuning optimization framework.

3 GSoC’09 extensions to GCC and ICI

This section describes our latest ICI extensions. All sources, plugins, implemen-
tation details and experimental results are available at the following collaborative
development pages:

– http://ctuning.org/wiki/index.php/CTools:ICI:Projects:GSOC09:Fine grain tuning

– http://ctuning.org/wiki/index.php/CTools:ICI:Projects:GSOC09:Function cloning
and program instrumentation

3.1 Enabling full control of GCC passes (selection and reordering)

One of the big problems researchers often face when using GCC is a constantly
changing list of passes from one version to another, making their research tools
dependent on a specific version of the compiler. We solve this problem by adding
new functionality in ICI to obtain a list of available/executing passes and thus
make research plugins more portable.

In GCC, all passes are invoked using execute one pass function. This func-
tion tests the pass gate status first and only then executes a pass itself. We
added an ICI event call just before this test to send the name of the pass, its
parameters and the gate status value to plugins. We wrote a plugin that works
in a record mode and saves all passes with their original order, parameters and
status of the gate.

GCC 4.4.x passes are stored in three linked lists: all lowering passes,
all ipa passes, and all optimization passes (the latter is a misnomer).
GCC 4.5.x has split the list all ipa passes into all small ipa passes and
all regular ipa passes, and added all lto gen passes. One should note that
some of the intra-procedural passes can have function-level sub-passes, so we had
to add extra functionality to be able to handle such situations in ICI. Finally,
we added ICI event calls before each of these groups and provided a facility to
skip execution of those groups of passes in GCC if triggered by the plugin. In

- 105 -

this case, a plugin written in a reuse mode can feed all passes back to a com-
piler in an arbitrary order and also execute auxiliary passes (such as function
cloning, program instrumentation or feature extractor) on demand, thus gaining
full control of the previously closed and hardwired compilation process.

In the last decade, multiple research projects have been investigating the
selection of an optimal order of optimization passes [2, 6] using in-house research
compilers. Now, we have a possibility to enhance these studies with a production
compiler in a realistic environment but we face a new problem. Since GCC
has not been designed for research, it provides very little information about
dependencies between passes. This means that we can not explore a large search
space of arbitrary orders of GCC passes due to frequent compiler crashes or
invalid generated binaries.

(PASS GROUP=) {*}PASS GROUP1 { |INDIVIDUAL PASSA(DEPENDENCE)
{,INDIVIDUAL PASSB(DEPENDENCE){,...}}{&INDIVIDUAL PASSC(FORBID)
{,INDIVIDUAL PASSD(FORBID)}}}; {*}PASS GROUP2...; {*}PASS GROUP3

– PASS GROUP can be a combination of other pass groups and individual passes;
– “*” means that a group from the right of this sign can be omitted; without it the

group will always be selected (for initialization passes, etc).
– “|” means that a group from the left can be selected only if all groups from the

right of this sign (separated by “,”) have been also selected (true-dependence).
– “&” means that a group from the left can be selected only if none of the all groups

from the right of this sign has been previously selected (anti-dependence).
– “;” means that the groups separated by this sign can be selected in any order.

Fig. 2. Formal definition of dependency grammar for GCC passes.

Therefore, we decided to develop a simple dependency grammar to be able
to describe and generate valid sequences of optimization passes as described in
Figure 2. In the future we plan to represent this grammar in the EBNF (Ex-
tended BackusNaur Form) [44], but for simplicity reasons now we use it as is
it is presented in Fig. 2. We expect to provide a list of groups of passes with
dependencies for each release of a compiler. Now, we have an ability to either
generate the default order of passes as in GCC if we turn on all the passes from
the list or generate an arbitrary valid sequence of passes for empirical perfor-
mance/code size/compilation time exploration of various orders. Unfortunately,
creating such a list of dependencies based on this grammar is a non-trivial task
itself. It is an on-going work and we use both manual and automatic methods
to find such dependencies. We start from the default order in GCC and start
swapping passes each time checking that the compilation completed successfully
and the code produced correct output on a number of datasets thus gradually
finding dependencies between passes. We then verify each dependency manually.

Such methodology and grammar can in turn help to modularize GCC and test
its correctness (semi-)automatically. We expect to build the first list of passes

- 106 -

with their dependencies for GCC 4.4.x within the next few months. Interestingly,
we discovered an explicit dependency between pass “alias”, which performs may-
alias optimization, and pass “fre”, which performs full redundancy elimination:
placing “alias” pass after “fre” in some cases could lead to the changes in pro-
gram semantic and consequently to the errors in produced binary program. In
other words, “alias” should be placed always before“fre” lest the compiler could
produce invalid code.

3.2 Enabling control of individual transformations

Control over selection of passes and their orders in GCC already opens up many
research opportunities. However, our ultimate goal is to provide control over
each individual transformation. Previously, special source to source tools have
been used to optimize math libraries [1, 4, 8] and large applications [5] using
iterative compilation with transformations such as loop tiling, interchange, un-
rolling and array padding among many others. Most of these transformations are
now available inside GCC and other production compilers making them perfect
candidates to substitute all specialized tuners.

We patch optimization passes to include event calls just before an individual
transformations are applied. We pass all preceding information (decision to apply
the transformation based on GCC optimization heuristic including its features
and suggested parameters) to a plugin that can either just record this information
for further off-line analysis (including machine learning techniques to learn good
optimizations) or change the decision and parameters and force the compiler to
change its internal decision.

Handling events for each transformation may sometimes slow down the com-
piler. There can be several solutions to that. We propose including both patched
and non-patched optimization passes that can be controlled globally to control
individual transformations only on parts of the code where that may have a high
payoff in terms of performance or other benefits. We can also create self-adjusting
passes that can register/remove events on demand.

We extend ICI to support handling of event parameters. ICI event parameters
are actually pointers to temporal data that can live across several events before
they are explicitly unregistered. When an event is issued, corresponding handler
functions are executed and can read or write event parameters.

With the new ICI, it is fairly easy for researchers to record or reuse pa-
rameters of several common data types, such as integer. Pointers can also be
registered in ICI as a parameter with the only difference that users have the
responsibility to handle the type information correctly.

Together with the control of global optimization passes, the fine-grain control
of transformations provides the ultimate control over full compiler optimization
heuristic, opening up multiple research opportunities. We currently have support
for loop unrolling and loop interchange (from GRAPHITE) and hope to provide
support for the rest of transformations together with the community shortly.

- 107 -

3.3 Adding generic function cloning and program instrumentation

������ ���	�
�� ������ ���	�
�� ����� 	���������
		����Entry

Exit

Body

Entry

Exit

Lable: 0

Body

Lable: 1
���
����� �������
Return (reurn_var)

…

Lable: n
���
����� �������
Return (reurn_var)

����� � ����� ������ �� ���� ���������
cgraph_create_edge

cgraph_create_edge

BB BB

Fig. 3. Generic function cloning pass in GCC.

Multi-versioning helps to make static programs adaptive at run-time. It can
be used to enable collective optimization, speed up iterative compilation by eval-
uating differently optimized versions at run-time and create self-tuning binaries
adaptable to different inputs or architectures [25, 30, 29].

Therefore, we have implemented a new pass in GCC, named generic clone,
which can generate multiple copies of a given function, and insert a selection
function at the beginning of the original function automatically as shown in
Figure 3. To enable transparent modification of code (useful for collective opti-
mization), we also add linking with external libraries without Makefile and GCC
command-line modifications. These libraries may include different clone selec-
tion mechanisms for multiple practical and research purposes. For example, we
are porting a clone selection mechanism from [25] to select differently optimized
clones using hardware counters to enable adaptation of statically-compiled code
for different program and system behavior at run-time. The call to the external
selection function is followed by a switch structure to invoke selected clone.

We also have developed an instrumentation pass to be able to modify pro-
grams using plugins as shown in Figure 4. Currently, this pass can insert function
calls to externally linked libraries at the beginning and the end of the compiled
program to support collection of profile information for research tools, collective
optimizers and self-tuning programs. We can also add such calls for any func-
tion including generated clones. This may be needed to monitor the behavior of
the functions using external hardware counter libraries or connect program with

- 108 -

������ ���	�
��
Entry

Exit

Body BB’s

BB

Body BB Body BB …

������ ���	�
�� �����
�����
�����
��
Entry

Exit

���� �����������
Body BB’s

BB

Body BB ���� ��������� Body BB ���� ���������…

�����
�����
��
Fig. 4. Program instrumentation pass in GCC.

architecture simulators, etc. Importantly, we can instrument programs through
plugins without any modifications to the source code thus keeping programs
portable, simplifying development of program analyzers and enabling quick pro-
totyping of research ideas. Eventually, we would like to provide program instru-
mentation capabilities on loop and even instruction level making GCC a powerful
research tool for program analysis.

Both the generic cloning pass and instrumentation pass are implemented as
SIMPLE IPA PASS in GCC and can be executed after the function availability is
determined by the visibility pass. We added command line options to per-
form function cloning and instrumentation but we strongly recommend using ICI
plugins to invoke these passes while avoiding modifying Makefiles or compilation
scripts.

New extensions to GCC make it a powerful toolset to create adaptive binaries
and libraries by combing cloning and instrumentation passes with the control of
individual transformations to produce clones tuned at fine-grain level through
external plugins.

3.4 Adding XML support for plugins data exchange

In the new ICI we decided to add XML support for data exchange between
plugins and other tools besides simple row data format. We have several reasons
to use XML:

– The format of the data exchanged between plugins and other tools is a well-
structured and supports hierarchy.

– The XML format is widely used and can help users utilize their favorite tools
to analyze the data.

- 109 -

<pass pass_name=’’generic_cloning’’ pass_type=’’SIMPLE_IPA’’>

<function function_filename=’’susan.c’’ function_name=’’susan_thin’’>

<clones >1</clones>

<clone_name_extension >_clone</clone_name_extension>

<adaptation_function >clone_select</adaptation_function>

<options_clone >-O3</options_clone>

</function>

</pass>

Fig. 5. Example of XML data file to perform function cloning using plugins.

<pass pass_name=’’instrumentation’’ pass_type=’’SIMPLE IPA’’>

<function function_filename=’’susan.c’’ function_name=’’susan_edges_small’’

cloned=’’1’’>

<add_function_call_before_func >_instr_start</add_function_call_before_func>

<add_function_call_after_func >_instr_end</add_function_call_after_func>

</function>

</pass>

Fig. 6. Example of XML data file to perform program instrumentation using plugins.

– The XML format is highly extensible, which is critical for future develop-
ments and backward compatibility.

– The XML format can be easily verified for correctness.

Figure 5 shows an example of the configuration file for a function cloning
plugin in XML format. In this case, function ’susan thin’ from file ’susan.c’ will
be cloned once; a clone will be called susan thin clone 1; a selection function
will be inserted calling clone select and -O3 global optimization flag will be
applied to a clone.

Figure 6 shows another example for function instrumentation. Function
susan edges small from file ’susan.c’ will be instrumented and additional func-
tion calls susan edges small instr start and susan edges small instr end

will be inserted at the beginning and end of this function.
We are currently synchronizing the XML format for fine-grain program opti-

mizations with the cTuning Collective Optimization Database format [45] to be
able to store new experimental data there.

4 Experiments

In order to demonstrate our new research extensions to GCC and show their
practicality, we perform several preliminary experiments on program optimiza-
tion and adaptation (we plan to continue systematic experimentation in future
work). For this preliminary study we decided to use both small kernels such as
matrix multiply and a few larger applications from the MiBench/cBench bench-
mark suite [46].

- 110 -

We selected the following popular servers for our experiments:

– Dual-Core AMD Opteron 8218 with Red Hat Enterprise Linux AS release 4 X64 64
(referred later as Opteron machine, cTuning PLATFORM ID = 11930834698757062);

– Intel Xeon E3110 running CentOS release 5.3, X86 64 (referred later as Xeon
machine, cTuning PLATFORM ID = 395021328416545100, ENVIRONMENT ID
= 7880645273825986);

– Intel Core2Duo T8300 running Linux Ubuntu SMP (referred later as Intel Core2Duo
machine, cTuning PLATFORM ID = 16563583955227076, ENVIRONMENT ID =
42866903217278407);

Since we are still working on synchronizing our recent developments with
mainline GCC, we performed our experiments using GCC 4.4.0 (cTuning COM-
PILER ID = 129504539516446542) patched with ICI 2.0 and GSoC’09 exten-
sions. We used the PAPI library [47] to obtain cycle accurate timing of our
programs.

We provide cTuning unique IDs to help reviewers, readers and users ver-
ify and reproduce some of our results using cTuning Collective Optimization
Database [45]. We hope that the dissemination of experimental results using
common R&D tools and optimization repository will become a norm in the fu-
ture and will help to speed up and improve academic and industrial research.

4.1 Controlling fine-grain program transformations in GCC

We decided to make a preliminary evaluation of the fine-grained control of trans-
formations in GCC using a very simple and well-known example that up to now
often needed specialized source-to-source tuners: optimizing matrix multiply us-
ing loop unrolling. Now, we can rely purely on a compiler to create and tune
adaptive libraries.

We use the new instrumentation pass to add external cycle accurate timers
from PAPI at the beginning and the end of the matrix multiply function. GCC’s
default unrolling heuristic suggest to unroll matmul 7 times when using -O3

-funroll-loops without taking data size into account. Since GCC 4.4 can only
make power of two minus one copies of the loop body, i.e., unroll power of two
times, we evaluated the following loop unrolling factors: 1, 3, 7, 31, 63 and 127
for square matrix sizes randing from 20x20 to 512x512.

The results from iterative compilation for Opteron and Xeon platforms are
presented in Figure 7. They are similar to results obtained through source-to-
source transformation from [1, 5, 48]. It clearly shows that the default static
compiler optimization heuristic is incapable of producing the best code for a va-
riety of inputs and fine-grain iterative compilation even with only loop unrolling
can bring up to 1.5 times speedup. However, it can also bring considerable per-
formance degradation for some combinations of datasets and unrolling numbers.
The results for Opteron clearly show correlation of best unrolling factors, with
the memory hierarchy showing complex interactions between various cache levels
for large matrix sizes. Results for Intel are more difficult to explain and we leave
detailed analysis for the future work. However, the results already show that

- 111 -

0.
8

1
1.

2
1.

4

0 100 200 300 400 500 600

Matrix size

S
pe

ed
up

 b
y

cp
u

tim
e

Unroll 1
Unroll 3
Unroll 7
Unroll 15
Unroll 31
Unroll 63
Unroll 127

(a) AMD Opteron

0.
6

0.
8

1
1.

2
1.

4

0 100 200 300 400 500 600

Matrix size

S
pe

ed
up

 b
y

cp
u

tim
e

Unroll 1
Unroll 3
Unroll 7
Unroll 15
Unroll 31
Unroll 63
Unroll 127

(b) Intel Xeon

Fig. 7. Speedup of matmul for various matrix sizes when controlling loop unrolling in
GCC through ICI.

GCC with the new ICI opens up many opportunities for research on fine-grain
program optimizations, their interaction (particularly when adding more trans-
formations including polyhedral optimizations) and performance prediction.

4.2 Creating adaptive programs and libraries

The experimental results from the previous section also motivate our static mul-
tiversioning approach in GCC to enable creation of adaptive applications. New
extensions to ICI allow us to reproduce and extend the research framework
from [25, 29, 38, 28] using GCC and select appropriately optimized functions
based on the dataset and architecture features (using CPU ID and hardware
counters). We will first replicate our technique to build an optimized run-time
decision tree automatically using statistical and machine learning techniques as
in [28].

- 112 -

Fig. 8. Overhead of call-switch mechanism during generic function cloning.

Naturally, a run-time overhead may be introduced by our call-switch mecha-
nism. We decided to perform preliminary experiments to evaluate this overhead
using cBench benchmark. We selected 6 hot functions covering most of the execu-
tion time of all programs using OProfile (excluding main), cloned them once and
added a cyclical selection mechanism using GCC with new ICI. Figure 8 clearly
demonstrates that at least for MiBench/cBench, the execution time overhead of
our call-switch mechanism is negligible in most of the cases in comparison with
the original code. Figure 9 also shows the negligible growth of binaries after
cloning all hot functions, which is critical for embedded systems. These results
are similar to results from the [25] when using source-to-source cloning.

Fig. 9. Binary growth when cloning all hot functions once.

- 113 -

Best flags taken from cTuning
database [45] vs baseline(-O3)

susan e dijkstra sha e

. . . alias retslot . . . crited sink loop

. . . loopdone vrp . . .
28% 5% 26%
762541000430973173 841507490430918931 130797385743093369

. . . sink alias loop . . . loopdone vrp . . .
34% 8% 29%
127297480343098038 208941853843093041 149436739843093444

. . . sink alias loop . . . loopdone retslot

. . . crited vrp. . .

28% 9% 31%
193582669430976651 576051282430931424 350720421430934188

Table 1. Speedups and associated cTuning RUN ID (to reproduce results if needed)
over -O3 for preliminary manual pass reordering experiments using three cBench pro-
grams, MILEPOST GCC 4.4.0 with new ICI extensions and Intel Core2Duo machine.

4.3 Preliminary evaluation of pass reordering

Since we have now enabled the optional arbitrary pass selection and ordering
in GCC, we would like to evaluate potential performance improvements from
different pass sequences. We tried first to reproduce some of the results from [2, 6]
but have not succeeded so far. We spent some time manually reordering passes in
the “all optimizations” group and finally found several programs where different
pass orders improve the code over the default GCC optimization order and the
best selection of optimization passes/flags from cTuning repository [45]. Table 1
shows how the position of pass “alias”,“retslot” and “crited” influenced overall
speedup over -O3, the best default GCC optimization heuristic. Moreover, the
most profitable pass sequences depend on the program being optimized. Though
this dependence is not yet large, it still shows new research opportunities in
GCC and motivates us to extend research from [19] and learn good optimization
orders for a given program, architecture and a dataset using statistical and
machine learning techniques.

5 Synchronization with mainline GCC 4.5

We have spent more than 3 years on ICI developments and this framework has
become too complex to patch for each new release. Since we hope that it can
be eventually useful for both research community and GCC end-users, we would
naturally like now to move it to mainline GCC. After many discussions, the
forthcoming release of GCC will finally feature a low-level plugin framework.
However, it is still quite different from ICI. For example, ICI has been written to
allow researchers to insert new code easily in random places within GCC without
much planning: events and parameters have names and are managed in a hash
table which is easy to deal with but may have performance overhead at each
event raising site even if there is no callback for that event. In contrast, GCC 4.5
plugins have been designed to have a very low overhead, but require explicitly
adding an enum number and a name for every new event, and all parameters
have to be passed via a single pointer which may potentially result in many
ad-hoc structs. We will try to address this by having a special wrapper to pass
a list of named parameters using a va list* through the original GCC 4.5 events
interface. We will also have a number of pre-existing events in GCC 4.5 which we

- 114 -

may want to interface with the ICI named parameters. We also plan to discuss
with the GCC community whether the ICI type description could be accepted
in GCC. Finally, we separated ICI into high-level compiler-independent research
interface and a low-level compiler-dependent fast low-level interface synchronized
with the native plugin framework in GCC 4.5.

6 Conclusions and Future Work

In this article we presented our recent GSoC’09 extensions to GCC plugin sys-
tem to simplify and popularize the use of this free, wide-spread open-source
compiler in realistic research on code and architecture optimization. The new
infrastructure separates ICI into high-level compiler-independent and low-level
compiler-dependent libraries and provides support for generic function cloning
and run-time adaptation for statically-compiled programs in heterogeneous en-
vironments, inter-procedural and function-level optimization pass selection and
reordering with a dependency grammar able to describe valid sequences, con-
trol of individual transformations and their parameters for fine-grain application
optimization, and the XML representation of the compilation flow to ease com-
munication with external tools.

We are currently synchronizing the low-level Interactive Compilation Inter-
face and GSoC’09 extensions with mainline GCC and its new native plugin
framework to provide a reasonably stable compiler-independent API to the re-
search community during rapid compiler evolution. We will be gradually adding
external control of OpenMP and individual transformations including inlining,
vectorization and polyhedral loop transformations from the GRAPHITE pass.
We plan to provide support for program instrumentation and instruction ma-
nipulation for advanced code analysis and optimization. Eventually, researchers
would also like to have source to source transformations in GCC as well as
support for dynamic optimization and split compilation (using MONO and
GCC4CIL, for example), remove hard-coded dependencies between passes, and
exploit direct access to global variables. Finally, we would like to start system-
atic investigation of the correctness of automatically generated combinations of
optimizations. This is of particular importance during statistical collective opti-
mization [29] when using the cTuning framework with GCC [30, 43] for embedded
devices, data centers and cloud computing systems for automatic, continuous and
transparent performance/power tuning of user applications or for whole system
optimization (such as Moblin and Android).

7 Acknowledgments

Yuanjie Huang and Liang Peng have been supported by Google Summer of Code pro-

gram’09 program to implement fine-grain tuning, function cloning and program instru-

mentation. Yuriy Kashnikov has been supported by UVSQ to implement pass reorder-

ing in GCC. Joern Renneke has been supported by INRIA to move the Interactive

Compilation Interface to mainline GCC and synchronize it with the current GCC 4.5

- 115 -

plugin system. We would like to thank multiple users from GCC, cTuning and HiPEAC

communities for their useful feedback. We would also like to thank Prof. William Jalby

for interesting discussions about ICI and program optimizations. Finally, we would like

to thank anonymous reviewers, Jeremmy Bennett and Phil Barnard for their insightful

comments to improve this article.

References

1. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: Pro-
ceedings of the Conference on High Performance Networking and Computing.
(1998)

2. Cooper, K., Schielke, P., Subramanian, D.: Optimizing for reduced code space using
genetic algorithms. In: Proceedings of the Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES). (1999) 1–9

3. Bodin, F., Kisuki, T., Knijnenburg, P., O’Boyle, M., Rohou, E.: Iterative com-
pilation in a non-linear optimisation space. In: Proceedings of the Workshop on
Profile and Feedback Directed Compilation. (1998)

4. Matteo, F., Johnson, S.: FFTW: An adaptive software architecture for the FFT.
In: Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing. Volume 3., Seattle, WA (May 1998) 1381–1384

5. Fursin, G., O’Boyle, M., Knijnenburg, P.: Evaluating iterative compilation. In:
Proceedings of the Workshop on Languages and Compilers for Parallel Computers
(LCPC). (2002) 305–315

6. Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J., Bailey,
M., Paek, Y., Gallivan, K.: Finding effective optimization phase sequences. In:
Proceedings of the Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES). (2003) 12–23

7. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.: Compiler
optimization-space exploration. In: Proceedings of the International Symposium
on Code Generation and Optimization (CGO). (2003) 204–215

8. Singer, B., Veloso, M.: Learning to predict performance from formula modeling
and training data. In: Proceedings of the Conference on Machine Learning. (2000)

9. Pan, Z., Eigenmann, R.: Fast and effective orchestration of compiler optimizations
for automatic performance tuning. In: Proceedings of the International Symposium
on Code Generation and Optimization (CGO). (2006) 319–332

10. Heydemann, K., Bodin, F.: Iterative compilation for two antagonistic criteria:
Application to code size and performance. In: Proceedings of the 4th Workshop
on Optimizations for DSP and Embedded Systems, colocated with CGO. (2006)

11. Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In:
Proceedings of International Symposium on Code Generation and Optimization
(CGO). (2008)

12. Nisbet, A.: GAPS: Genetic algorithm optimised parallelization. In: Proceedings of
the Workshop on Profile and Feedback Directed Compilation in conjunction with
PACT’98. (1998)

13. : ACOVEA: Using Natural Selection to Investigate Software Complexities. http:
//www.coyotegulch.com/products/acovea

14. : Learning to schedule straight-line code. In: Proceedings of the Conference on
Neural Information Processing Systems (NIPS). (1997)

- 116 -

15. Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to automatic
production of compiler heuristics. In: Proceedings of the International Conference
on Artificial Intelligence: Methodology, Systems, Applications. LNCS 2443 (2002)
41–50

16. Stephenson, M., Martin, M., O’Reilly, U.: Meta optimization: Improving compiler
heuristics with machine learning. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI). (2003)
77–90

17. Stephenson, M., Amarasinghe, S.: Predicting unroll factors using supervised clas-
sification. In: Proceedings of the IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). (2005)

18. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M., Thom-
son, J., Toussaint, M., Williams, C.: Using machine learning to focus iterative
optimization. In: Proceedings of the International Symposium on Code Genera-
tion and Optimization (CGO). (2006)

19. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A.,
Mendelson, B., Barnard, P., Ashton, E., Courtois, E., Bodin, F., Bonilla, E., Thom-
son, J., Leather, H., Williams, C., O’Boyle, M.: Milepost gcc: machine learning
based research compiler. In: Proceedings of the GCC Developers’ Summit. (June
2008)

20. Dubach, C., Jones, T.M., Bonilla, E.V., Fursin, G., O’Boyle, M.F.: Portable com-
piler optimization across embedded programs and microarchitectures using ma-
chine learning. In: Proceedings of the 42nd International Symposium on Microar-
chitecture (MICRO). (December 2009)

21. Tournavitis, G., Wang, Z., Franke, B., O’Boyle, M.F.: Towards a holistic ap-
proach to auto-parallelization: Integrating profile-driven parallelism detection and
machine-learning based mapping. In: Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI). (2009)

22. Voss, M., Eigenmann, R.: Adapt: Automated de-coupled adaptive program trans-
formation. In: Proceedings of the International Conference on Parallel Processing
(ICPP). (2000)

23. Lu, J., Chen, H., Yew, P.C., Hsu, W.C.: Design and implementation of a lightweight
dynamic optimization system. In: Journal of Instruction-Level Parallelism. Vol-
ume 6. (2004)

24. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO), Palo Alto, California (March 2004)

25. Fursin, G., Cohen, A., O’Boyle, M., Temam, O.: A practical method for quickly
evaluating program optimizations. In: Proceedings of the 1st International Con-
ference on High Performance Embedded Architectures & Compilers (HiPEAC).
Number 3793 in LNCS, Springer Verlag (November 2005) 29–46

26. Stephenson, M.W.: Automating the Construction of Compiler Heuristics Using
Machine Learning. PhD thesis, MIT, USA (2006)

27. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: Using hot
optimizations without getting burned. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Languaged Design and Implementation (PLDI). (2006)

28. Luo, L., Chen, Y., Wu, C., Long, S., Fursin, G.: Finding representative sets of op-
timizations for adaptive multiversioning applications. In: 3rd Workshop on Statis-
tical and Machine Learning Approaches Applied to Architectures and Compilation
(SMART’09), colocated with HiPEAC’09 conference. (January 2009)

- 117 -

29. Fursin, G., Temam, O.: Collective optimization. In: Proceedings of the Inter-
national Conference on High Performance Embedded Architectures & Compilers
(HiPEAC 2009). (January 2009)

30. Fursin, G.: Collective tuning initiative: automating and accelerating development
and optimization of computing systems. In: Proceedings of the GCC Developers’
Summit. (June 2009)

31. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.A.M.,
Tjiang, S.W.K., Liao, S.W., Tseng, C.W., Hall, M.W., Lam, M.S., Hennessy, J.L.:
Suif: An infrastructure for research on parallelizing and optimizing compilers. SIG-
PLAN Notices 29(12) (1994) 31–37

32. : ROSE Compiler Infrastructure. http://www.rosecompiler.org
33. : LLVM Compiler Infrastructure. http://llvm.org
34. : GNU Compiler Collection. http://gcc.gnu.org
35. Cornero, M., Costa, R., Pascual, R.F., Ornstein, A.C., Rohou, E.: An experimental

environment validating the suitability of cli as an effective deployment format
for embedded systems. In: Proceedings of the International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC). (January 2008)

36. : MONO: cross platform, open source .NET development framework. http://www.
mono-project.com

37. : ICI: Interactive Compilation Interface: plugin system to convert production com-
pilers into research toolsets (2005)

38. Jimenez, V., Gelado, I., Vilanova, L., Gil, M., Fursin, G., Navarro, N.: Predictive
runtime code scheduling for heterogeneous architectures. In: Proceedings of the
International Conference on High Performance Embedded Architectures & Com-
pilers (HiPEAC 2009). (January 2009)

39. Long, S., Fursin, G., Franke, B.: A cost-aware parallel workload allocation approach
based on machine learning techniques. In: Proceedings of the IFIP International
Conference on Network and Parallel Computing (NPC 2007). Number 4672 in
LNCS, Springer Verlag (September 2007) 506–515

40. Starynkevitch, B.: Multi-stage construction of a global static analyser. In: GCC
Developers’ Summit. (July 2007)

41. Glek, T., Mandelin, D.: Using gcc instead of grep and sed. In: Proceedings of the
GCC Developers’ Summit. (June 2008)

42. Sean Callanan, D.D., Zadok, E.: Extending gcc with modular gimple optimizations.
In: GCC Developers’ Summit. (July 2007)

43. : cTuning.org: Collective tuning center to automate design and optimization of
computing systems. http://cTuning.org (2008)

44. Whitney, G.: An extended bnf for specifying the syntax of declarations. In: AFIPS
’69 (Spring): Proceedings of the May 14-16, 1969, spring joint computer conference,
New York, NY, USA, ACM (1969) 801–812

45. : cTuning optimization repository (Collective Optimization Database). http:

//ctuning.org/cdatabase

46. : Collective Benchmark: collection of open-source programs and multiple datasets
from the community. http://ctuning.org/cbench

47. : PAPI: A Portable Interface to Hardware Performance Counters. http://icl.

cs.utk.edu/papi

48. Fursin, G.: Iterative Compilation and Performance Prediction for Numerical Ap-
plications. PhD thesis, University of Edinburgh, United Kingdom (2004)

- 118 -

