
GCC as a Research Tool

Diego Novillo
dnovillo@google.com

GROW'10
Pisa, Italy

23 Jan 2010

23 Jan 2010 2

GCC for research? Really?

● Old
● Hard to learn
● Messy internals
● Fast moving target

● However
● Industrial strength
● Widely deployed and used
● Actively supported

23 Jan 2010 3

Where is GCC today?

● Feature rich
● High and low level optimizations
● Solid support for most popular architectures

● Growing set of features
● Loadable modules
● High-level loop optimizations
● Transactional memory
● Debugging optimized code
● Whole program optimization

23 Jan 2010 4

Plugins

● Interact with the parser
● Add new optimization passes
● Examine intermediate representation
● Implement custom analyses and checks
● Coding guidelines
● Semantic analysis on special code (e.g. locking analysis)

23 Jan 2010 5

Plug-in Support

● Extensibility mechanism to allow 3rd party
tools

● Wrap some internal APIs for external use
● Allow loading of external shared modules
● Versioning scheme prevents mismatching
● Useful for

– Static analysis
– Experimenting with new transformations

23 Jan 2010 6

Optimizing Very Large Programs

f1.C

foo()
{
 for (;;) {
 ...
 x += g (f (i, j), f (j, i));
 ...
 }
}

f2.C

float f(float i, float j)
{
 return i * (i - j);
}

float g(float x, float y)
{
 return x - y;
}

● Optimizations are limited by the amount of code that the
compiler can see at once

● Current technology only works across one file at a time
● Compiler must be able to work across file boundaries

23 Jan 2010 7

Optimizing Very Large Programs

Problem
Thousands of files, millions of functions, tens of gigabytes
Massive memory/computation complexity for a single machine

23 Jan 2010 8

WHOPR Architecture

Apply global
decisions locally

(parallel)
Generate GIMPLE

(parallel)

Make global
optimization decisions

(sequential)

Front End Middle End Back End

23 Jan 2010 9

Lightweight IPO

LIPO Key Idea:
• Move IPA at end of training phase in FDO, into the binary
• Augment profiles, add IPA analysis results
• During optimization build, use IPA data, read in additional

modules, enable inlining, indirect call promotion, etc.

Benefits:
• No more writing of compiler IR to disk, less resources
• Eliminate monolithic link-type IPO
• Reuses existing intra-module IPO
• Minimize code re-generation
• Easier debugging, easier debug info generation

23 Jan 2010 10

Where should GCC go?

● Infrastructure improvements
● Increased modularization
● Attract new developers
● Improve maintenance

● Stability
● Many new features
● Need to smooth out rough edges

23 Jan 2010 11

Incremental Compilation
● Speed up edit-compile-debug cycle
● Speeds up ordinary compiles by compiling a

given header file “once”
● Incremental changes fed to compiler daemon
● Incremental linking as well
● Side effects

– Refactoring
– Cross-referencing
– Compile-while-you-type (e.g., Eclipse)

23 Jan 2010 12

Dynamic Optimization Pipeline

● Phase ordering not optimal for every case
● Current static ordering difficult to change
● Allow external re-ordering

– Ultimate control
– Allow experimenting with different orderings
– Define -On based on common orderings

● Problems
– Probability of finding bugs increases
– Enormous search space

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

