
A New Intermediate Representation for GCC
based on the XARK Compiler Framework ?

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems

University of A Coruña, A Coruña, Spain
{jandion,arenaz,juan}@udc.es

Abstract. The automatic generation of efficient parallel code continues
to be a challenge for compiler technology. In the past, only the devel-
opers of applications targeted for supercomputers were aware of exploit-
ing the parallelism available in the hardware. Currently, the increase in
the number of cores available in commodity processors has generalized
the problem. Parallelizing compilers typically address automatic detec-
tion of parallelism through the analysis of a set of standard graphs that
capture information about the statements of the program. Well-known
examples are the Data Dependence Graph (DDG), the Control Flow
Graph (CFG) and the Dominance Tree (DT). This paper outlines a new
compiler intermediate representation (IR) intended to ease detection of
parallelism in sequential programs. In constrast to standard compiler
IRs that are based on the concept of program statement, the new IR
hinges on the concept of computational kernel provided by the XARK
compiler framework. Thus, a kernel represents a program construct that
is used frequently by programmers. Well-known examples are inductions,
reductions or recurrences. In addition, this paper presents several ideas
for using such kernel-level IR for the automatic generation of parallel
code for multi-core processors. An application from the SPEC CPU2000
benchmark suite is used as case study.

1 Introduction

Even for experienced programmers, the development and maintenance of pro-
grams that make an efficient use of the computer architecture is a complex
time-consuming task. The actual emergence and widespread use of multi-core
processors adds more complexity, as current compiler technology cannot gener-
ate efficient parallel code for multi-core processors, being the programmer re-
sponsible for exploiting the parallelism available in hardware.

Current optimizing and parallelizing compilers split programs into statements
that are represented as abstract syntax trees. In order to capture program be-
havior, the compiler builds an intermediate representation that consists of a
? This research was supported by the Ministry of Education and Science of Spain

and FEDER funds of the European Union (Project TIN2007-67537-C03) and by the
Galician Government (Project PGIDIT06PXIB105228PR)

set of standard graphs that connect program statements [1, 2, 10]. For instance,
the GCC compiler establishes relationships between GIMPLE-SSA statements
by building a control flow graph (CFG), a data dependence graph (DDG) or
a dominance tree (DT). Although this approach was shown to be effective in
practice for compilation of real codes for mono-core processors, the level of ab-
straction of statement-based IRs makes it difficult for the compiler to detect the
parallelism available in real applications.

The recognition of program constructs that are frequently used by software
developers (computational kernels, from now on) is a powerful mechanism to
detect parallelism automatically [4, 6–9]. XARK [5] is an extensible compiler
framework that provides a complete, robust and general solution to the prob-
lem of automatic recognition of computational kernels (inductions, reductions
or array recurrences), even in the presence of complex control flows.

This paper presents preliminary work on the proposal of a new kernel-based
IR and sketches an algorithm to guide automatic parallelization for multi-core
processors. As an illustrative case study, the full-scale application EQUAKE of
the SPEC CPU2000 benchmark suite is analyzed.

The rest of the paper is organized as follows. Section 2 describes the EQUAKE
application. Section 3 presents the XARK compiler framework and the collec-
tion of kernels recognized in EQUAKE. Section 4 sketches a new kernel-based
IR and describes the way it captures the behavior of EQUAKE as a whole.
Section 5 outlines a preliminary algorithm for the automatic parallelization of
EQUAKE targeting multi-core processors. Finally, Section 6 concludes the paper
and presents future work.

2 The Application EQUAKE of SPEC CPU2000

One of the applications of the SPEC CPU2000 benchmark suite is EQUAKE.
This program performs a simulation of seismic waves in large, highly heteroge-
neous valleys. EQUAKE is capable of recovering the time history of the ground
motion due to a specific seismic event everywhere within a valley. Computations
are carried out on an unstructured mesh which locally resolves wavelengths us-
ing a finite element method. The source code of EQUAKE consists of 1512 lines
grouped into 16 procedures. This relatively-small size allows us to analyze its
behavior manually in a reasonable amount of time. Our analysis of EQUAKE
revealed that the code contains a significant variety of the kernels that are used
frequently in practice.

For the sake of clarity, Figures 1 and 2 show only an excerpt of the main() and
smvp() procedures, respectively. Note that smvp() is the most costly routine of
the program. Approximately, it consumes more than 70% of the total execution
time and, therefore, it is a likely target for an optimizing compiler. The loop
fori of main() procedure (see Figure 1, lines 11–26) traverses the set of finite
elements in order to assemble the global simulation variables M and C using
the contribution of each finite element to the solution. In each fori iteration,

the individual contribution is computed and stored in the element matrices, for
instance, matrix Ce.

The output of EQUAKE is a report of the displacements at both the hypocen-
ter and epicenter of the earthquake for a predetermined number of simulation
timesteps. For this purpose, the loop nest foriter (Figure 1, lines 29–59) per-
forms a time integration. In each timestep, the displacement (3D array disp) is
computed using the values corresponding to the two previous timesteps and in-
volving several procedure calls at run-time (e.g., smvp()). The arrays computed
during the simulation phase (e.g., M and C) are used as input data. Once the
displacement disp has been computed, each foriter iteration finishes by calcu-
lating the velocity (2D array vel). The three variables disptminus, dispt and
disptplus are updated in a round-robin fashion (i.e., a circular swap) in each
iteration of foriter (see lines 54–58). These three variables are used to access to
the 3D array disp, which stores the results of EQUAKE in the current and the
previous two timesteps.

3 The XARK Compiler Framework

The XARK compiler framework [5] builds a hierarchical representation of a
program through the recognition of a comprehensive collection of kernels. It
decomposes the program into a set of mutually dependent kernels that capture
the behavior of a code fragment and provide the compiler with information
about the computations performed at runtime on scalar and non-scalar variables
(e.g., arrays, pointers). A detailed description of the collection of kernels can be
consulted in [5]. Next, we present the kernels that appear in EQUAKE:

– Regular assignment: Assignment of a new value to a set of elements of an
array variable following a regular access pattern, typically given by an affine
expression of a loop index. The computation of array vel in the time inte-
gration phase (Figure 1, lines 49–52), assigns a new value to each element
vel[i][j], being i and j affine expressions of the indices of the enclosing
loops fori and forj . Another example is the computation of array Ce in
each fori iteration during the simulation phase (Figure 1, lines 12–14).

– Regular reduction: The elements of an array variable are assigned a new
value that depends on the value already stored in the array element. The
elements updated in a regular reduction are determined by a regular access
pattern. The computation of array Ce in lines 16–17 of Figure 1 is a regular
reduction with a sum (+) reduction operation and a linear access pattern.
Another example is the computation of array disp[disptplus][*][*] in
the loop nest fori of lines 39–44 of Figure 1. In this case, the new value
disp[disptplus][i][j] depends on itself and on two different array ele-
ments disp[dispt][i][j] and disp[disptminus][i][j]. Note that in the
scope of fori, the variables disp[disptplus][*][*], disp[dispt][*][*]
and disp[disptminus][*][*] represent three 2D arrays that do not overlap
in memory.

1 double ∗∗M , ∗∗C , ∗∗M23 , ∗∗C23 , ∗∗V23 , ∗∗vel , ∗∗∗ disp , ∗∗∗K ;
2 int i , j , k , ii , jj , kk , iter , timesteps , disptplus , dispt , disptminus ;
3 double time , Ke [1 2] [1 2] , Me [1 2] , Ce [1 2] , alpha ;
4
5 /∗ I n i t i a l i z a t i o n phase ∗/
6 disptplus = 0 ;
7 dispt = 1 ;
8 disptminus = 2 ;
9

10 /∗ Simulation phase ∗/
11 for (i = 0 ; i < ARCHelems ; i++) {
12 for (j = 0 ; j < 12 ; j++) {
13 Me [j] = 0 . 0 ;
14 Ce [j] = 0 . 0 ;
15 }
16 for (j = 0 ; j < 12 ; j++)
17 Ce [j] = Ce [j] + alpha ∗ Me [j] ;
18 for (j = 0 ; j < 4 ; j++) {
19 M [ARCHvertex [i] [j]] [0] += Me [j ∗ 3] ;
20 M [ARCHvertex [i] [j]] [1] += Me [j ∗ 3 + 1] ;
21 M [ARCHvertex [i] [j]] [2] += Me [j ∗ 3 + 2] ;
22 C [ARCHvertex [i] [j]] [0] += Ce [j ∗ 3] ;
23 C [ARCHvertex [i] [j]] [1] += Ce [j ∗ 3 + 1] ;
24 C [ARCHvertex [i] [j]] [2] += Ce [j ∗ 3 + 2] ;
25 }
26 }
27
28 /∗ Time in t eg ra t i on phase ∗/
29 for (iter = 1 ; iter <= timesteps ; iter++) {
30 for (i = 0 ; i < ARCHnodes ; i++)
31 for (j = 0 ; j < 3 ; j++)
32 disp [disptplus] [i] [j] = 0 . 0 ;
33 smvp (ARCHnodes , K , ARCHmatrixcol , ARCHmatrixindex , disp [dispt] ,
34 disp [disptplus]) ;
35 time = iter ∗ Exc . dt ;
36 for (i = 0 ; i < ARCHnodes ; i++)
37 for (j = 0 ; j < 3 ; j++)
38 disp [disptplus] [i] [j] ∗= − Exc . dt ∗ Exc . dt ;
39 for (i = 0 ; i < ARCHnodes ; i++)
40 for (j = 0 ; j < 3 ; j++)
41 disp [disptplus] [i] [j] += 2 .0 ∗ M [i] [j] ∗ disp [dispt] [i] [j] −
42 (M [i] [j] − Exc . dt / 2 .0 ∗ C [i] [j]) ∗ disp [disptminus] [i] [j] −
43 Exc . dt ∗ Exc . dt ∗ (M23 [i] [j] ∗ phi2 (time) / 2 .0 +
44 C23 [i] [j] ∗ phi1 (time) / 2 .0 + V23 [i] [j] ∗ phi0 (time) / 2 . 0) ;
45 for (i = 0 ; i < ARCHnodes ; i++)
46 for (j = 0 ; j < 3 ; j++)
47 disp [disptplus] [i] [j] = disp [disptplus] [i] [j] /
48 / (M [i] [j] + Exc . dt / 2 .0 ∗ C [i] [j]) ;
49 for (i = 0 ; i < ARCHnodes ; i++)
50 for (j = 0 ; j < 3 ; j++)
51 vel [i] [j] = 0 .5 / Exc . dt ∗ (disp [disptplus] [i] [j] −
52 disp [disptminus] [i] [j]) ;
53
54 /∗ Circular swap ∗/
55 i = disptminus ;
56 disptminus = dispt ;
57 dispt = disptplus ;
58 disptplus = i ;
59 }

Fig. 1. Excerpt of the source code of the EQUAKE application.

1 void smvp (int nodes , double ∗∗∗A , int ∗Acol , int ∗ Aindex , double ∗∗v ,
2 double ∗∗w) {
3 int i ;
4 int Anext , Alast , col ;
5 double sum0 , sum1 , sum2 ;
6
7 for (i = 0 ; i < nodes ; i++) {
8 Anext = Aindex [i] ;
9 Alast = Aindex [i + 1] ;

10 sum0 = A [Anext] [0] [0] ∗ v [i] [0] + A [Anext] [0] [1] ∗ v [i] [1] +
11 + A [Anext] [0] [2] ∗ v [i] [2] ;
12 sum1 = A [Anext] [1] [0] ∗ v [i] [0] + A [Anext] [1] [1] ∗ v [i] [1] +
13 + A [Anext] [1] [2] ∗ v [i] [2] ;
14 sum2 = A [Anext] [2] [0] ∗ v [i] [0] + A [Anext] [2] [1] ∗ v [i] [1] +
15 + A [Anext] [2] [2] ∗ v [i] [2] ;
16 Anext++;
17 while (Anext < Alast) {
18 col = Acol [Anext] ;
19 sum0 += A [Anext] [0] [0] ∗ v [col] [0] + A [Anext] [0] [1] ∗ v [col] [1] +
20 + A [Anext] [0] [2] ∗ v [col] [2] ;
21 sum1 += A [Anext] [1] [0] ∗ v [col] [0] + A [Anext] [1] [1] ∗ v [col] [1] +
22 + A [Anext] [1] [2] ∗ v [col] [2] ;
23 sum2 += A [Anext] [2] [0] ∗ v [col] [0] + A [Anext] [2] [1] ∗ v [col] [1] +
24 + A [Anext] [2] [2] ∗ v [col] [2] ;
25 w [col] [0] += A [Anext] [0] [0] ∗ v [i] [0] + A [Anext] [1] [0] ∗ v [i] [1] +
26 + A [Anext] [2] [0] ∗ v [i] [2] ;
27 w [col] [1] += A [Anext] [0] [1] ∗ v [i] [0] + A [Anext] [1] [1] ∗ v [i] [1] +
28 + A [Anext] [2] [1] ∗ v [i] [2] ;
29 w [col] [2] += A [Anext] [0] [2] ∗ v [i] [0] + A [Anext] [1] [2] ∗ v [i] [1] +
30 + A [Anext] [2] [2] ∗ v [i] [2] ;
31 Anext++;
32 }
33 w [i] [0] += sum0 ;
34 w [i] [1] += sum1 ;
35 w [i] [2] += sum2 ;
36 }
37 }

Fig. 2. Source code of the smvp() procedure of the EQUAKE application.

– Irregular reduction: A reduction where the updated array elements are de-
termined by an indirection array. An example is the computation of M in
the simulation phase (Figure 1, lines 18–21), which uses an indirection array
ARCHvertex to determine the element of M updated in each iteration of fori

and forj .

The automatic recognition of computational kernels in full-scale real appli-
cation requires the development of an inter-procedural kernel recognition en-
gine. For this purpose, work in progress [3] focuses on the development of an
efficient inter-procedural Gated Single Assignment (GSA) form on top of the
GIMPLE-SSA infrastructure provided by GCC. GSA is an extension of the well-
known Static Single Assignment (SSA) form where reaching definition informa-
tion of scalar and array variables is represented syntactically. The construction
of GSA involves two main tasks: first, placement of special operators (called φ
generically) at the points of the program with multiple predecessors in the con-
trol flow graph; and second, renaming of program variables so that the left-hand
sides of the assignment statements define distinct unique variables. Different

kinds of φ operators are distinguished according to the point of the program
where they are inserted:

– µ(xout, xin), which appears at loop headers and selects the initial xout and
loop-carried xin values of a variable.

– γ(c, xtrue, xfalse), which is located at the confluence node associated with
a branch (e.g., if-endif construct), and captures the condition c for each
definition to reach the confluence node: xtrue if c is fulfilled; xfalse, if c is
not satisfied.

– α(aprev, s, e), whose meaning is that the element s of an array variable a is
set to the value e and the other elements take the values of the previous
definition of the array, denoted as aprev.

As shown in Figure 2, smvp() carries out an irregular reduction and stores
the result in the reduction array w, being Acol the indirection array and as-
suming that formal parameters A, v and w point to non-overlapping memory
locations. Note that the inter-procedural GSA form enables the recognition of
kernels through procedure calls. At the call site of lines 33–34 of Figure 1, the
actual parameters of smvp() are known to point to disjoint memory locations.
Thus, the recognition engine infers that smvp() computes an irregular reduction
on array disp[disptplus] within the main program.

4 A New Kernel-Based Intermediate Representation

In this section we propose a new kernel-based IR intended to expose coarse-
grain and fine-grain parallelism to the compiler. Standard IRs typically consist
of statement-based DDG, CFG and DT. In a similar manner, our new kernel-
based IR consists of a Kernel-based DDG (K-DDG) and a Kernel-based CFG
(K-CFG).

As mentioned in Section 3, XARK builds a hierarchical representation that
decomposes a program into a set of mutually dependent kernels. We call this
representation the K-DDG, whose nodes represent kernels and whose edges rep-
resent dependences between kernels. For illustrative purposes consider the graph
of EQUAKE presented in Figure 3. The nodes are depicted as ovals labeled with
the program variable that stores the results of the computation of the kernel, as
well as the type of kernel. On the one hand, the nodes Me and M of the simulation
phase capture two kernels: regular assignment and irregular reduction, respec-
tively. Note that kernels abstract the computations of a set of statements spread
over the program. For instance, kernel M contains three statements of the body of
loop forj (see Figure 1, lines 18–21). On the other hand, the edges capture the
kernel-level dependences that connect statements of different kernels (see edge
between kernels Me and M in Figure 3). Note that the remaining dependences
between statements of a kernel are not exposed to the compiler in the K-DDG
as they are represented in the type of kernel recognized by XARK.

The second graph of our new IR is the Kernel-based Control Flow Graph
(K-CFG). We propose a two-phase construction algorithm that first groups the

Fig. 3. Kernel-based IR of the source code of the EQUAKE application.

kernels (i.e., the nodes of the K-DDG) provided by XARK into execution scopes
and later searches for flow dependences between the kernels associated with each
execution scope. In the first phase, the execution scope of a kernel is computed
using the concept of region [1]. A region of a flow graph is a collection of nodes
N and edges E such that: (1) There is a header h in N that dominates all
the nodes in N ; (2) If some node m can reach a node n in N without going
through h, then m is also in N ; and (3) E is the set of all the control flow edges
between nodes n1 and n2 in N , except (possibly) for some that enter h. Note
that loop nests are often the most costly part of a program, thus being the most
appropriate candidates for a compiler to extract parallelism. In order to build
the K-CFG, the program is split into a hierarchy of loop regions that represent
the execution scopes and kernels are attached to execution scopes by executing
Algorithm 1. The inputs are the K-DDG provided by XARK and the CFG and
the DT provided by the GCC compiler. The algorithm determines the set of
basic blocks that contain each statement of a kernel K, excluding µ-statements
associated to loop headers. Next, the basic block bb dom that dominates the
remaining basic blocks in the set is computed. The γ-statements of the GSA
form assure that such basic block bb dom exists. Finally, the execution scope of
the kernel K is the innermost loop region that contains bb dom.

In the second phase, the kernel-level dependences of the K-DDG are classified
into flow or not flow dependences using Algorithm 2. For a kernel-level depen-
dence K1 → K2 to be a flow dependence, a dominate relationship between K1

and K2 must exist. Two cases are distinguished. In the first case, the execution
scopes R1 and R2 of K1 and K2 are checked. If R1 and R2 have the same parent
region and R1 precedes R2 in the hierarchy (see Algorithm 2, lines 4–5), then all
the statements of K1 are executed before any statement of K2. Thus, K1 → K2

is a flow dependence that assures that the results of K1 have been computed
before beginning the execution of K2.

In the second case, we assume that K1 and K2 are attached to the same
execution scope (R1 = R2), or that R1 and R2 do not have the same parent
region. In order to establish a flow dependence between K1 and K2, we need
to assure that all the statements of K1 dominate all the statements of K2 (see
Algorithm 2, lines 6–10). An example of this situation is shown below:

1 i f (c == 0) {
2 a = 5 ;
3 b = a + 3 ;
4 } else {
5 a = 2 ;
6 b = a + 1 ;
7 }

In this case, in each path of this if-then statement there is a pair-wise dominance
relation between the sentence that writes a and the sentence that writes b. Thus,
Algorithm 2 concludes that the kernel associated to a dominates the kernel
associated to b.

The resulting kernel-based IR for the EQUAKE program is shown in Figure 3.
In the K-CFG the nodes are grouped into execution scopes that represent the
loops of the code. For the sake of clarity, the execution scopes of the inner loops

Algorithm 1 Computation of the execution scopes.
Input: K-DDG, CFG, DT
1: foreach kernel K in the K-DDG do
2: bb dom = basic block of CFG that contains a stmt of K (excluding µ-stmt)
3: foreach statement stmt in K do
4: if stmt is not a µ-statement then
5: bb stmt = basic block of CFG that contains stmt
6: if bb stmt dominates bb dom then
7: bb dom = bb stmt
8: end if
9: end if

10: end for
11: K.execution scope = innermost enclosing loop region of bb dom;
12: end for

Algorithm 2 Detection of kernel-level flow dependences.
Input: K-DDG, K-CFG, CFG, DT
1: foreach kernel-level dependence K1 → K2 of the K-DDG do
2: R1 = execution scope(K1)
3: R2 = execution scope(K2)
4: if (R1.parent reg = R2.parent reg) & (R1 precedes R2 in the hierarchy) then
5: mark K1 → K2 as flow dependence
6: else if ∀s1 ∈ K1 ∃s2 ∈ K2 such that statements s1 and s2
7: belong to the same basic block in the CFG
8: and s1 precedes s2 in the DT then
9: mark K1 → K2 as flow dependence

10: end if
11: end for

of the time integration phase are not depicted in Fig. 3 (e.g., execution scope
of inner loop forj — lines 40–44 — in loop nest fori — lines 39–44 —). As
will be shown in the following section, this high-level representation abstracts
the implementation details of the computational kernels, enabling the compiler
to automatically detect the parallelism available in EQUAKE and to generate
parallel code for a multi-core processor.

5 Automatic Detection of Parallelism for Multi-Core
Processors

In general, the automatic parallelization of sequential codes involves two main
problems: first, detection and decomposition of a program into a set of tasks that
can be run in parallel; and, second, generation of parallel code for the underly-
ing hardware architecture. The kernel-based IR presented in Section 4 exposes
multiple levels of parallelism that range from parallelizable individual kernels
(intra-kernel parallelism) up to a kernel-level dependence graph bounded to ex-
ecution scopes (inter-kernel parallelism). Next, we outline a simple algorithm to

Algorithm 3 Task decomposition for multi-core processors.
Input: K-DDG, K-CFG
1: merge execution scopes with one kernel and one cross-boundary edge
2: d = 0
3: foreach execution scope R at depth d in the K-CFG do
4: if ∀ kernel K ∈ R such that K is parallelizable then
5: n drain kernels = number of kernels without outgoing edges in K-DDG
6: that cross the execution scope boundaries
7: if n drain kernels = P then
8: tasks = set of P drain kernels
9: else if n drain kernels < P then

10: tasks = split parallelizable drain kernels to create P tasks
11: else
12: tasks = merge drain kernels to create P tasks
13: end if
14: map tasks to different cores
15: end if
16: d++
17: end for

decompose a program into tasks using current (dual-, quad-, eight-core) multi-
core processors.

Algorithm 3 presents a pseudocode of the task decomposition strategy. The
analysis focuses on those coarse-grain execution scopes where all the kernels are
parallelizable, i.e, there exists a parallelizing code transformation targeted to
each kernel [4, 6–9]. The types of kernels found in the K-CFG of EQUAKE are
regular assignment, regular reduction and irregular reduction. Thus, all of these
execution scopes are analyzed by the task decomposition algorithm.

The simulation phase contains two kernels that lead to the creation of two
tasks: the first task corresponds to the execution of the kernels Me and M (see
subgraph TASK1 in Figure 3); the second task involves kernels Me, Ce and C
(see subgraph TASK2). If the target multi-core processor contains more than
two cores, then intra-kernel parallelism is exploited by applying parallelizing
transformations to the irregular reductions M and/or C as needed (see lines 9–10
in Algorithm 3). Note that, in general, this strategy replicates computations on
different cores (see kernel Me belonging to TASK1 and TASK2 in Figure 3).

The time integration phase cannot be executed before the simulation phase
finishes in order to prevent the violation of cross-boundary kernel-level depen-
dences (appropriate synchronization is needed). The time integration phase is
represented by six execution scopes, each containing one kernel. All of these six
kernels are connected by one kernel-level flow dependence. As a result, these
execution scopes are merged in order to expose a sequence of kernels to the com-
piler (see line 1 in Algorithm 3). Next, the kernel vel that lacks outgoing edges
is transformed into parallel code in order to create as many tasks as needed. For
illustrative purposes, assume that two tasks TASK3 and TASK4 are created (see
Figure 3). Each task computes a subarray of vel. Thus, in order to minimize

communication and synchronization, they must be assigned the computation of
the corresponding subarrays of disp. As a result, the tasks work in parallel with
memory locations that do not overlap. Finally, note that kernels with irregular
access patterns need to be transformed using an inspector-executor approach to
avoid communication and synchronization between the cores.

Overall, the strategy outlined in this section enables the detection of paral-
lelism within full-scale applications. The kernel-based IR (K-DDG and K-CFG)
naturally reflects the structure of the source code and, thus, avoids the violation
of the data dependences specified by the programmer.

6 Conclusions and Future Work

This paper is a first step towards the definition of a kernel-based IR that ex-
poses multiple levels of parallelism to the compiler. The new kernel-based IR is
inspired by standard statement-based IRs used in current optimizing compilers.
Thus, the K-DDG and the K-CFG are intended to provide a powerful frame-
work for the development of new full-scale automatic parallelization techniques.
The EQUAKE program of SPEC CPU2000 was used as case study to show the
potential of this approach.

As future work we intend to improve the K-CFG construction algorithm
and to run tests with well-known benchmark suites (e.g., SPEC, PERFECT). In
addition, we will address the development of an algorithm for task decomposition
that targets multi-core and many-core processors as well as GPU processors.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques
and Tools. Addison-Wesley (2006)

2. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann (2001)

3. Arenaz, M., Amoedo, P., Touriño, J.: Efficiently Building the Gated Single Assign-
ment Form in Codes with Pointers in Modern Optimizing Compilers. In: 14th In-
ternational Euro-Par Conference (Euro-Par), Las Palmas de Gran Canaria, Spain.
LNCS, vol. 5168, pp. 360–369. Springer (2008)

4. Arenaz, M., Touriño, J., Doallo, R.: Compiler Support for Parallel Code Genera-
tion through Kernel Recognition. In: 18th International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, NM, USA. IEEE Computer Society
(2004)

5. Arenaz, M., Touriño, J., Doallo, R.: XARK: An eXtensible framework for Auto-
matic Recognition of computational Kernels. ACM Trans. Program. Lang. Syst.
30(6) (2008)

6. Callahan, D.: Recognizing and Parallelizing Bounded Recurrences. In: 4th Inter-
national Workshop on Languages and Compilers for Parallel Computing (LCPC),
Santa Clara, CA, USA. LNCS, vol. 589, pp. 169–185. Springer (1991)

7. Lin, Y., Padua, D.A.: On the Automatic Parallelization of Sparse and Irregular
Fortran Programs. In: 4th International Workshop on Languages, Compilers, and

Run-Time Systems for Scalable Computers (LCR), Pittsburgh, PA, USA. LNCS,
vol. 1511, pp. 41–56. Springer (1998)

8. Pinter, S.S., Pinter, R.Y.: Program Optimization and Parallelization Using Idioms.
ACM Trans. Program. Lang. Syst. 16(3), 305–327 (1994)

9. Setoain, J., Tenllado, C., Gómez, J.I., Arenaz, M., Prieto, M., Touriño, J.: Towards
Automatic Code Generation for GPU Architectures. In: 9th International Work-
shop on State-of-the-Art in Scientific Computing on GPUs (PARA), Trondheim,
Norway (2008)

10. Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley
(1996)

