
Compiler-controlled and Compiler-hinted

Voltage Scaling Approaches

Dmitry Zhurikhin1, Andrey Belevantsev1, Kirill Batuzov1,
Valery Ignatiev1, Roman Zhuykov1, and Semun Lee2

1 Institute for System Programming, Russian Academy of Sciences
{zhur,abel,batuzovk,rook,zhroma}@ispras.ru

2 Samsung Corp.
semun.lee@samsung.com

Abstract. This paper reports on the two approaches to dynamic volt-
age and frequency scaling (DVS) hinted by GCC and controlled by Linux
kernel. The first approach uses profiling information for marking DVS
regions which should be executed with lower frequency, while the ker-
nel does the actual switching on entry and exit of those regions, taking
into account possible switching requests from multiple processes. In the
second approaches, the kernel itself decides when and to what value the
frequency would be switched, and the compiler provides simple informa-
tion on behaviour of program regions. For both approaches, a light-weight
sampling-based profiling technique is developed. Results show some CPU
energy savings with both approaches, but not whole-system energy sav-
ings on the test boards used.

1 Introduction

In our previous work [14] we have evaluated some of the compiler techniques for
lowering the CPU energy consumption using GCC compiler, including compiler-
controlled voltage scaling (DVS), bit-switching minimization, and memory opti-
mizations. The most promising technique was found to be DVS, which provided
several per cent CPU energy savings in our testing and very small overall sys-
tem energy savings. However, the initial implementation of our DVS technique
had limitations, mainly a) being an intraprocedural transformation (and thus
considering neither interprocedural program regions nor any regions contain-
ing function calls as candidates for DVS) and b) not taking the multiprocess
environment into account.

We have conducted a research project that aimed at removing those lim-
itations. We have developed two DVS algorithms. One is a fully static inter-
procedural DVS approach (that is, a compiler controls the points of changing
frequency and the values on which it should be changed) that uses a kernel
manager for handling conflicts of queries for frequency changes between dif-
ferent processes. The other DVS approach is implemented in the kernel as a
cpufreq governor that uses compiler-provided information for making decisions
on DVS (a so-called “mixed” approach). We have also developed a light-weight



sampling-based profiling mechanism that is used in both approaches for devising
the needed information.

The rest of the paper is organized as follows. Section 2 describes the static
DVS approach together with the devised profile support. Section 3 reports on
the mixed DVS approach. Section 4 provides experimental results. Section 5
concludes.

2 Static Interprocedural DVS Operating in Multiprocess

Environment

The developed static DVS algorithm is based on the algorithm in [3] and its
implementation in our previous work [14]. We will shortly highlight the main
stages of the algorithm for clarity. The basic idea of the algorithm is to divide
a program into single-entry/single-exit (SESE) regions and to estimate their
execution time on each frequency from profiling data. Then, given that we know
CPU power consumption on each frequency from hardware specifications, and we
know frequency switching latency from experiments, we can assign any execution
frequency for each region and still we will be able to estimate the total time and
energy needed to execute the program. Therefore, this data is enough to solve
the optimization problem of finding the set of regions that provides the lowest
energy consumption while meeting some deadline on execution time.

Our implementation in [14] operates on a single function at a time and con-
sists of the following stages:

1. Construct basic regions and combined regions. A basic region is just a basic
block or a loop, while a combined region is a SESE region made from basic
regions.

2. For every basic region, profile overall execution time at each available pro-
cessor frequency, T (R, f), and the number of times a region is executed,
N(R).

3. Estimate T (R, f) and N(R) for combined regions3.
4. Find the best region (basic or combined) and its execution frequency using

which minimizes CPU energy consumption and does not increase running
time above given threshold (controlled by user).

5. Insert frequency switching commands at the entry and the exit of the selected
region.

Compared to [14], we have improved the following parts of the algorithm:
building program regions suitable for DVS (more combined regions are consid-
ered suitable); finding the regions which will be executed with lower frequency
(a set of regions is considered instead of a single region); profiling mechanism (a
light-weight sampling-based profiling is used); and working in multiprocess envi-
ronment (by handling queries for switching frequency from different processes in
the kernel). We will expand on these improvements in the following subsections.

3 N(R) is taken from the basic region that is at the entry of the combined region R.
T (R, f) is computed as sum of T (BR, f) over all basic regions BR that form the
combined region R.



2.1 Building Program Regions Suitable for DVS

The original intraprocedural implementation did not allow us to handle regions
with calls, such regions were not considered for optimization. In this paper, static
DVS optimization is implemented as an interprocedural pass in GCC, so we have
removed this restriction.

We build regions in two stages. The basic regions for each function are built
during early local passes and stored in struct function (GCC per-function
data). The reason for this is that the basic regions are actually profiled, so their
construction should happen at the moment when profiling information is read.
The actual optimization needs to see regions from all functions, so it happens in
an interprocedural pass later in the compiler pipeline.

In this pass, the combined regions are built for each function as SESE regions
(i.e. region body should be dominated by entry and postdominated by exit of the
region) whose blocks all belong to previously constructed basic regions. These
basic regions are allowed to contain calls. A combined region still may not cross
function boundaries though, as this was not implemented. However, combined
regions from all functions are merged in a single array, so that the solving part
of the DVS optimization can consider all regions at once.

It can be noted that constructing basic regions at one point of the compiler
pipeline and using them for optimization at another point creates the problem
of keeping the regions consistent between the two passes. This problem is solved
similarly to the problem of updating profile information: when control flow is
modified through the GCC cfghooks.c API, that is, when a basic block is
created, deleted, added to or removed from a loop, or merged with another
block, the information about basic region is updated accordingly. We have also
written a verifier to check the region consistency that is called when control flow
is modified.

2.2 Finding The Best Set of Regions to Perform DVS

We choose the set of regions on which we need to change frequency in an in-
terprocedural pass, after constructing combined regions of all functions in a
translation unit. The problem we solve is as follows. We consider two available
frequencies for program execution, maximum and minimum. Let us consider T
as the extra time we can use for program execution (calculated as p% slowdown
on execution time using the maximum frequency) and n program regions. Each
region has weight wr, calculated as the extra time needed to execute the pro-
gram using the minimum frequency and the latency of switching frequency, and
value vr, calculated as the energy saved when the region is executed on the mini-
mum frequency4. Now the problem of choosing the optimal set of regions can be
formulated as a 0-1 knapsack problem. However, there is additional restriction
on regions when operating in interprocedural mode: some regions may intersect
with each other (e.g., a region containing a call and a region in the callee), and
the regions we are choosing may not intersect.

4 We only consider regions with vr > 0 and wr < T .



We have implemented two algorithms for solving our problem. The first al-
gorithm is a simple greedy algorithm. We sort the regions based on vr/wr ratio
and we choose regions starting from the one with the lowest ratio. We add a
region to the set when it does not intersect with the regions that are already in
the set and when their total weight does not exceed T . If a region does not meet
these conditions, we consider the region with the next best ratio. The final set
is found when we process all regions.

The second algorithm is a backtracking algorithm that is used in case of small
number of regions to find the optimum solution. We sort the regions in ascending
order by weights and then in descending order by values, and we assign indexes
to the regions according to the resulting order. On each step, we try to add the
next region to the candidate set considering only regions with indexes greater
than the ones already in the set. When the current region intersects with some
of the candidate set regions, we process the next region in the sort order. When
adding the current region to the set the total set weight will exceed T , we don’t
process next regions as due to the sort order they will be too costly. In this case,
and also when the last region is processed, we backtrack by removing the region
with the largest index from the set and proceeding with adding the next region.
When we have succeeded in adding the region, we remember the current best
solution and proceed to the next region. In addition, we prune the search space
by backtracking immediately when adding all remaining regions to the set will
not provide better solution than the current best solution.

We can also model the intersecting regions by considering the graph G whose
vertexes correspond to program regions and whose edges connect a pair of regions
which do not intersect. Then a set of regions eligible for switching frequency will
form a clique in G, and our goal will be to find a clique whose vertices have
the maximum sum of values while having the sum of weights not greater than
T . One of the possible solutions to this problem can be found in [5]. We did
not implement this approach, as it is not obvious it would provide much better
solutions for our tasks.

2.3 Handling Recursive Functions

We need to make some additional efforts to handle regions that contain calls to
recursive functions. As the call graph may be incomplete, and it also may have
indirect calls, we may fail to detect recursive calls (i.e., loops in the call graph)
during compilation time. To solve this issue, we have created wrappers around
instructions for changing frequency, which are added to libgcc. For each region,
we compute its hash based on the source file name, the function name, and the
region number. When calling the wrapper, we store the region hash and the call
depth. The frequency is lowered when the depth equals to zero, then with each
subsequent request having the region hash equal to the stored one the depth is
increased. The frequency is raised back when the depth equals to one and the
region hash equals to the stored one.



2.4 A Sampling-based Profiler

The initial profile mechanism for DVS implemented in [14] turned out to be too
heavyweight, so the DVS optimization basically worked using incorrect data.
We have developed a lighter profiler based on kernel timer interrupts. The in-
strumented program and the kernel communicate via shared memory. When
the program starts, it requests a shared memory region from the kernel via the
ioctl call. The shared memory holds a stack of currently executing DVS re-
gions. When entering region R, its ID is pushed to the stack. When leaving R,
region IDs are popped from the stack until the ID of R is removed. This allows
gathering correct statistics in case we haven’t tracked some region exits. When a
timer interrupt occurs, all region counters that are currently stored on the stack
are updated. When the program is finished, the resulting sample data is written
on disk so that GCC can parse it later.

There is a problem of constructing a proper region ID. As we noted, a region
is identified by a source file name, a function name, and a region number. We
would like to fit the ID in a 32-bit number. However, as we need some space
for the function name and the region number, it would be hard to hash the file
names so that the hash function values will fit in the remaining space, so with a
large program (several hundred files) the collisions in detecting the regions could
very probably happen. To avoid this situation, we use a counter of compiled
translation units as a hash, stored in a separate file and incremented once per
compilation. Of course, this cannot be used in a production GCC, as this leads
to differences in code generation of the same file compiled several times.

Last thing to note here is that the profiling info for basic regions is up-
dated together with them between the early local pass of constructing basic
regions/reading profile information and the interprocedural pass of performing
the DVS optimization.

2.5 Handling DVS Requests from Multiple Processes

In a multiprocess environment, it is possible that the requests on frequency
change from several DVS processes will conflict. For this case, we have imple-
mented the mechanism of changing frequency as a modification of ondemand

governor of cpufreq instead of directly calling the wrappers added to libgcc.
The ondemand governor measures the periods of idle CPU and the periods of
executing useful code. When the ratio of these values exceeds certain threshold,
the CPU frequency is raised; when it is below another threshold, the frequency
is lowered, otherwise it is left unchanged.

We have modified the ondemand governor so that when a DVS program ex-
ecutes the region that should work on the lower frequency, the manager consid-
ers its execution time as idle CPU, so that the decision of lowering frequency
becomes more probable. The communication between the program and the ker-
nel happens through shared memory similarly to the profiling mechanism. The
choice of communicating with the kernel or using direct frequency changing calls
(i.e. pure static DVS) is controlled by a GCC option.



3 A Compiler-hinted Mixed DVS Approach

A mixed DVS approach is based on the idea that the CPU frequency control
should be done in an OS kernel dynamically, while using information about
program execution that can be gathered statically by a compiler. We have begun
our work by studying a number of state-in-the-art mixed DVS approaches. Since
most of these approaches are aimed at real-time systems, we couldn’t follow
them exactly as we don’t expect to have so much information about the running
application. Instead we have decided to enhance one of the pure online algorithms
with using additional information from the compiler.

The following subsections will provide more details about the related work
in mixed DVS approaches and Linux power management, our Linux kernel al-
gorithm, and our compiler algorithm.

3.1 Related Work on Mixed DVS

We will present two mixed DVS approaches that are most interesting to us. The
approach proposed by Azevedo et al. [1] is based around checkpoints. A check-
point is a special place in the program’s code marked with a label. It serves
as a point where the calculations of the needed CPU frequency are done. Dur-
ing program compilation the program time constraints are set for the execution
of the code regions between checkpoints, in terms of acceptable lower and up-
per bounds. Such information is stored in a special checkpoint database, along
with the possible checkpoint transitions derived from the program control flow.
Similarly to our approach, the program is profiled and run in order to get rep-
resentative data on its power consumption.

The actual CPU frequency scaling takes place during program execution and
can be done either by OS or by the code inserted at the checkpoints by the
compiler. The main idea of the scaling phase is to generate at each checkpoint a
list of events5 that may arise later when executing the program. Based on this
list, the upper frequency bound6 and the optimum frequency7 are computed, and
the frequency found is set accordingly. The drawbacks of this approach are that
it doesn’t take into account the additional power and time that are needed to
calculate the new CPU frequency and to set it, and that the approach was only
tested on a simulator. At the same time, the algorithm in [1] provides the flexible
way of specifying desired time and power properties of the compiled program.

The other approach by AbouGhazaleh et al. [2] is similarly divided into
two stages, offline and run-time. Initially, the data on program execution is
collected during profiling. At the offline stage this data is used to compute when

5 An event contains a list of next possible checkpoints.
6 The bound shows the maximum CPU frequency that should be set in order to save

any power.
7 The optimal frequency is the CPU frequency that should be set in order to satisfy

time constraints of all next possible checkpoints (i.e., the event list).



and how frequently the power management points8 (PMPs) will be called. Also,
during the offline phase the program is instrumented with power management

hints9 (PMHs). Each PMH consists of the compiler inserted code that computes
the worst-case remaining cycles starting from the current PMH location to the
program end. This value may vary dynamically based on the executed path for
each run. For example, the remaining cycles at a PMH inside the function body
are dependent on the path from which the function is called.

During run-time, a PMH computes and passes dynamic timing information to
the OS in a predetermined memory location which holds the most recent value of
the estimated worst-case remaining cycles. Periodically, a timer interrupt invokes
the OS to execute the PMP code, so the OS adjusts the CPU frequency based on
the latest value and the remaining time to the program deadline. The drawback
of this approach, common with the previous one, is that they are aimed at real-
time systems, so they could not be used directly as such.

3.2 Power Management in Linux

There are three widespread approaches to Linux power management:

– implemented as a stand-alone application or a daemon, e.g. CPUSpeed [6]
or Open Hardware Monitor [7] projects;

– implemented as a stand-alone module or a patch for the kernel, e.g. the
Dynamic Power Management project [8] or the approaches based on pre-2.6
Linux kernels;

– implemented as a governor of cpufreq, which is the Linux kernel module
that controls the CPU frequency added in the 2.6 kernel version.

At present, the Linux kernel contains five simple CPU frequency governors:
userspace, which allows the user to set any desired supported frequency; powersave,
which automatically sets minimum supported CPU frequency; performance,
which sets maximum supported CPU frequency; ondemand, which is an interval-
based dynamic CPU frequency scheduler10, increasing the CPU frequency when
the calculated load is more than 80% and decreasing it when the load is less
than 20%; and conservative, which is very close to the ondemand governor,
but it makes its decision also looking at the load of previous intervals. All these
governors are implemented as modules and depend on the cpufreq module. This
allows loading/unloading the governor modules and switching between them at
runtime.

There are three canonical DVS algorithms proposed in [10], which are OPT,
FUTURE, and PAST. The first two are impractical as they are able to look into

8 A power management point shows the moments of time when the OS makes a deci-
sion on the new CPU frequency.

9 The hints allow the OS to estimate the time remained until program ends; they are
used by the CPU frequency manager.

10 The ondemand governor calculates the CPU load on the last time interval as the sum
of the run times of all tasks from the last interval divided by the interval length.



the future of the trace data and are used for reference purposes only. The latter
is a practical variant formulated as a result of experiments with the former two.
OPT is an unbounded-delay perfect-future algorithm that uses available energy
in an optimal way by stretching the run times in a trace to fill all available idle
time. While the algorithm is simple, it is unfeasible as it doesn’t care when a
specific job completes as long as it does so before the end of the total time span of
the trace. As a result, OPT can produce large delays in jobs’ run time and cannot
give adequate response to real-time events. FUTURE is a modification of OPT
that can only look into the future by a small window of the next allocated time
interval. Energy consumption is optimized within the window while making sure
no work is delayed past the end of the window. FUTURE approaches OPT in
terms of energy savings for large windows, while for small ones its energy savings
are small as well. The other advantage of this algorithm is that no response is
delayed past the end of the window giving good real-time response in the case
of small window sizes. The PAST algorithm uses a window in the past instead
of looking into the future. PAST assumes that the workload in the next window
will be the same as the previous one. As with FUTURE, the window size can be
adjusted to give different performance results. Its performance has subsequently
been evaluated as relatively good even compared to newer and more sophisticated
algorithms [9].

The AVGn algorithm by Pering et al. [11] computes an exponential moving
average of the previous windows. Again, the idea is that the workload of the next
time interval is expected to be similar to the previous ones. AVGn improves on
the three similar algorithms that predict workload by searching for patterns
in the past CPU utilization, hoping that more intelligent heuristics will lead
to larger energy savings. The CYCLE algorithm is based on the idea that the
CPU utilization may be structured in a cyclical pattern of interleaved peaks and
valleys, a phenomenon that is observed often on CPU utilization graphs. When
the algorithm finds such cycles in the past intervals, it sets the CPU speed such
that the amount of work needed with any excess cycles still left can be completed
within the next window. When no pattern can be found, the load is predicted to
be constant11. PATTERN is a generalization of the CYCLE method meant to
detect any kind of pattern in the load level data of the previous intervals. When a
match is found, the load of the next interval is predicted to be the same as that
of the interval following the previous occurrence of the sequence. Finally, the
PEAK algorithm looks in the past for high peaks of activity interspersed with
more stable plains. Its prediction uses several heuristics based on the expectation
of narrow peaks.

The other more advanced approaches for controlling the CPU frequency are
usually aimed at special types of system load, e.g. when practically just media
applications are run. Such approaches present good results on corresponding
workflows, hence it is useful to know which types of load and kinds of applications
are expected for the target system.

11 The constant is given as a parameter to the algorithm.



Surprisingly, performance results of the described algorithms do not indicate
that the more complex heuristics outperform the simpler algorithms. According
to simulations in [9] and [12], the AVGn algorithm with its simple averaging
performs best of all, while CYCLE, PATTERN, and PEAK approaches are only
slightly better than PAST. Most of the described algorithms are implemented
and evaluated for the Linux kernel during the project YADDA [13].

3.3 Linux Kernel Part of Our Mixed DVS Approach

We have implemented our mixed DVS approach as a new cpufreq governor
called mixeddvs using performance measurement counters similarly to [4]. When
the governor is active, programs compiled with the support of this mixed DVS
will provide it with their status to guide its decisions. When such program is
executed, first it communicates with the governor via the ioctl call. The kernel
then allocates a hunk of shared memory for the program and registers its process
in the list of so-called controlled tasks, also starting the hardware counters if this
is the first controlled process.

The majority of the work of the kernel manager is done at the periods of
process scheduling, when the previous process (which just left the CPU) and the
next process (which is going to be executed) are known. If the previous process
is the controlled one, the kernel reads the hardware counters’ values and the
shared memory values. The hardware counters’ events are CCNT12, INSTR13, and
DCM14. The shared memory value is REGTPI, an average time for executing a single
instruction on the maximum CPU frequency. It is profiled at the compilation
stage and then is written to the shared memory via the instrumentation code.

Based on these values and on available slack time for slowdown, the kernel
manager selects the new CPU frequency to be used when the previous controlled
process will be executed next time. First, the slack time is modified as follows:
slack-time -= CCNT/Fcur - INSTR · REGTPI/Fmax · (100 + pf

loss
)/100, where Fcur

is the current CPU frequency, Fmax is the maximum CPU frequency, and pf
loss

is the percent of allowed slowdown. The first part of the right-hand side of the
formula shows the CPU time actually spent by a program, while the second part
shows the CPU time the program would have spent (on the maximum CPU
frequency), also increased by the slowdown percent. The difference shows the
CPU time15 used by the task that is above the slowdown percent. When the
resulting slack time is too low or too high, the manager selects the maximum
or the minimum CPU frequency accordingly, otherwise it looks at the hardware
counters’ values to find whether the currently executing region is good for DVS
or not. We have tried several heuristics on this step, and we have found out that
the relative number of data cache misses, DCM, works good. So, the lower or the
higher CPU frequency is selected when DCM is high or low accordingly.

12 A number of CPU cycles passed from the last counter reset.
13 A number of ARM instructions executed from the last counter reset.
14 A number of data cache misses.
15 This time is positive when the process has used lower CPU frequency previously and

negative otherwise.



When the new CPU frequency value is found, it will be used next time when
the previous controlled process will be executed. The maximum CPU frequency
is used for the previous process otherwise and also for the next process when it
is not controlled. The only exception is when the process execution time is low,
which is usual for daemons or short processes. The current CPU frequency will
be kept then so that the number of the CPU frequency transitions will be lower.
When the controlled process finishes or otherwise ends unexpectedly, it signals
the kernel (again via ioctl) to free its data and the allocated shared memory.

The performance slowdown threshold is controlled in several ways. When
selected, the mixeddvs governor creates a file called performance loss in the
cpufreq root directory. The value stored in the file represents the slowdown
threshold that the new processes will have. It is also possible to set this value for
the given program during compilation via the special option and the parameter.

3.4 GCC Part of Our Mixed DVS Approach

The GCC compiler part we used for the mixed DVS approach implementation
is based on our previous work in Section 2. The profiling workflow is practically
the same except that the single run on the maximum CPU frequency is needed
for gathering data. This information includes REGTPI values for each region. The
region REGTPI is low when it is CPU bounded and no memory stalls are present;
when REGTPI is relatively high, then large number of memory stalls were en-
countered during region execution, so it is probably efficient to lower the CPU
frequency on the region. REGTPI values are calculated by the kernel using CCNT

and INSTR events pretty much the same way as with sampling-based profiling
described in Section 2.4.

When the profiling results are used on the second compilation, GCC inserts
the instrumentation code into the program, including the ioctl calls to allo-
cate/free the kernel shared memory and the storing of REGTPI values of the DVS
regions to the shared memory. As it is hard to predict the time of the next
process scheduling, and as several DVS regions could be executed since the last
process scheduling, the compiler also inserts code that averages REGTPI’s over all
executed DVS regions from the previous process scheduling.

4 Experimental Results

We have implemented both our approaches in GCC version 4.3.1 and Linux ker-
nel version 2.6.24. We have evaluated our DVS optimizations (both static and
mixed) together with the common cpufreq governors on the Aburto test suite,
which represents many common scientific applications. The following measure-
ment scheme was used. The CPU governor was set to the needed one before the
test was run and then the powersave governor was set right after the test finish.
Measurements were done during the same equal time for each run of the test.
The average static power consumption of the test board was subtracted from
the resulting power meter value.



Test results are shown in Table 1. Here, time is the actual run time of
the test and is shown in seconds; energy is the CPU energy consumed during
the measurement and is shown in mWh; the percent values show the differ-
ence between the given value and the performance column value. Performance,
powersave, ondemand, mixed, and offline columns represent the runs with
the maximum/minimum CPU frequency set, the kernel DVS approach, and our
mixed and offline (with kernel manager) DVS approaches accordingly. The last
two approaches had a slowdown threshold of 20%. Only some of the Aburto
test programs are shown; other tests showed no significant differences in their
run-time behavior.

performance powersave ondemand offline mixed

time energy time energy time energy time energy time energy

heapsort val 63 6.7 87 4.3 63 7 67 6.7 69 5.8
% 0 0 -38.1 35.82 0 -4.48 -6.35 0 -9.52 13.43

nsieve val 56 5.8 65 3.3 58 5.8 66 3.4 59 5.1
% 0 0 -16.07 43.1 -3.57 0 -17.86 41.38 -5.36 12.07

sim val 132 15.1 219 9.7 133 15.4 212 14.3 180 12.8
% 0 0 -65.91 35.76 -0.76 -1.99 -60.61 5.3 -36.36 15.23

tfftdp val 82 10.12 132 6.77 82 10.16 82 10.15 97 9.42
% 0 0 -60.98 33.1 0 -0.4 0 -0.3 -18.29 6.92

whets val 164 21.1 323 15.2 164 21.7 194 19.5 202 20.4
% 0 0 -96.95 27.96 0 -2.84 -18.29 7.58 -23.17 3.32

madmp3 val 169 9.2 169 7.7 169 7.7 169 7.4 169 7.5
% 0 0 0 16.3 0 16.3 0 19.57 0 18.48

Total val 666 68.02 995 46.97 669 67.76 790 61.45 776 61.02
% 0 0 -49.4 30.95 -0.45 0.38 -18.62 9.66 -16.52 10.29

Table 1. Evaluation results.

The results show that the mixed DVS approach is able to save 10.3% CPU
energy on average while slowing down execution on 16.5% in average, while the
offline DVS approach is able to save 9.7% CPU energy at the cost of 18.6%
slowdown.

5 Conclusions

We have completed our work by improving the static DVS approach over the
one proposed in [14] by making it an interprocedural pass in GCC and via im-
plementing a light-weight sampling-based profiling for receiving its data; and by
making it interprocess via implementing a kernel manager for handling its re-
quests. We have also implemented the mixed DVS approach as the new cpufreq

governor using the data gathered via the similar sampling-based profiling and the
shared memory for communication between the program and the Linux kernel.



We have evaluated both static and mixed DVS approaches. The results show
that the mixed DVS approach is able to save 10.3% CPU energy on average while
slowing down execution on 16.5% on average, while the offline DVS approach
is able to save 9.7% energy at the cost of 18.6% slowdown. These results show
some CPU energy consumption reduction, but not the whole-system energy con-
sumption reduction. We believe that either the approaches should be evaluated
on the real mobile devices, where the ratio of the CPU energy consumption to
the whole system energy consumption will be larger, or they will be useful for
the future devices with multicore CPUs that will again have the above ratio
increased compared to the current one.

References

1. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A.
Nicolau. Profile-Based Dynamic Voltage Scheduling Using Program Checkpoints.
In Proceedings of the Conference on Design, Automation and Test in Europe, March
2002, IEEE Computing Society.

2. N. AbouGhazaleh, D. Moss, B. R. Childers, and R. Melhem. Collaborative Op-
erating System and Compiler Power Management for Real-Time Applications. In
ACM Trans. Embed. Comput. Syst., vol 5, 1, Feb. 2006, pp. 82-115.

3. C. Hsu. Compiler-Directed Dynamic Voltage and Frequency Scaling for CPU Power
and Energy Reduction. Doctoral Thesis, Rutgers University, 2003.

4. K. Choi, R. Soma, and M. Pedram. Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance Trade-Off Based on the Ratio of Off-
Chip Access to On-Chip Computation Times. In Proceedings of the Conference on

Design, Automation and Test in Europe, Volume 1, February 2004.
5. A. Massaro, M. Pelillo, and I. M. Bomze. A Complementary Pivoting Approach

to the Maximum Weight Clique Problem. SIAM J. on Optimization 12, 4 (Apr.
2002), pp. 928-948.

6. CPUSpeed kernel module. http://www.carlthompson.net/Software/CPUSpeed
7. Open Hardware Module. http://ohm.freedesktop.org
8. Dynamic Power. http://dynamicpower.sourceforge.net
9. D. Grunwald, C. B. Morrey, P. Levis, M. Neufeld, and K. I. Farkas. Policies for

Dynamic Clock Scheduling. In Proceedings of the 4th Conference on Symposium on

Operating System Design and Implementation, Volume 4, San Diego, California,
October 2000.

10. M. Weiser, B. Welch, A. Demers, and S. Shenker, S. Scheduling for Reduced CPU
Energy. In Proceedings of the 1st USENIX Conference on Operating Systems Design

and Implementation, Monterey, California, November, 1994.
11. T. Pering, T. Burd, and R. Brodersen. The Simulation and Evaluation of Dynamic

Voltage Scaling Algorithms. In ISLPED ’98: Proceedings of the 1998 international

symposium on Low power electronics and design, pp. 76-81, 1998.
12. K. Govil, E. Chan, and H. Wasserman. Comparing Algorithms for Dynamic Speed-

setting of a Low-power CPU. In Mobile Computing and Networking, pp.13-25, 1995.
13. The YADDA project. http://www.eecg.toronto.edu/∼tamda/csc2228
14. D. Zhurikhin, A. Belevantsev, A. Avetisyan, K. Batuzov, and S. Lee.

Evaluating power-aware optimizations within GCC compiler. Presented on
GROW’09 workshop, January 2009, http://www.doc.ic.ac.uk/∼phjk/GROW09/

papers/06-PowerBelevantsev.pdf.


