
Portable and Efficient Auto-vectorized Bytecode: a
Look at the Interaction between Static and JIT

Compilers

Erven Rohou – HiPEAC member?

INRIA, Centre Inria Rennes - Bretagne Atlantique
Campus de Beaulieu

Rennes, France

Abstract. Heterogeneity is a confirmed trend of computing systems. Byte-
code formats and just-in-time compilers have been proposed to deal with the
diversity of the platforms. By hiding architectural details and giving software
developers a unified view of the machine, they help improve portability and
manage the complexity of large software.
Independently, careful exploitation of SIMD instructions has become crucial
for the performance of many applications. However, auto-vectorizing compil-
ers need detailed information about the architectural features of the processor
to generate efficient code.
We propose to reconcile the use of architecture neutral bytecode formats with
the need to generate highly efficient vectorized native code. We make three
contributions. 1) We show that vectorized bytecode is a viable approach that
can deliver portable performance in the presence of SIMD extensions, while
incurring only minor penalty when SIMD is not supported. In other words,
the information that a loop can be vectorized is the vectorized loop itself.
2) We analyze the interaction between the static and just-in-time compilers
and we derive conditions to deliver performance. 3) We add vectorization
capabilities to the CLI port of the GCC compiler.

1 Motivations

In this study, we attempt to reconcile two apparently contradictory trends of com-
puting systems. On the one hand, hardware heterogeneity favors the adoption of
bytecode format and late, just-in-time (JIT) code generation. On the other hand,
exploitation of hardware features, in particular SIMD extensions, is key to extract
performance from the hardware.

1.1 Mobile Long-lived Applications and Processor Heterogeneity

Heterogeneity of computing systems is a global trend. On embedded systems, this
trend has been driven by the drastic constraints on cost, power and performance.
General purpose computers also feature some degree of variability: availability of a
? This work was partially supported by the European project ACOTES and the HiPEAC

Network of Excellence. The author would like to thank colleagues at IBM, INRIA, STMi-
croelectronics and Thales for fruitful discussions.

floating point unit, width of the vectors of the SIMD unit, number of cores, kind and
features of the GPU, and so on. Some predict that technology variability will make
it hard to produce homogeneous manycores, and that the large number of available
cores will push to specialize cores for dedicated tasks [7].

The lifetime of applications is much longer than that of the hardware. This prob-
lem is known as legacy code in the industry. Embedded systems rarely offer binary
compatibility because of the associated cost. Servers and personal computers usually
do, but at a significant design cost (with occasional disruptions like DEC, or Apple).
However, compatibility is limited to functionality; old code can only take advantage
of increased clock frequency (which, incidentally, has recently stopped) and improved
microarchitecture, but not of additional features or increased parallelism. Applica-
tions also become mobile. Because of the ubiquity of computing devices, application
developers must make sure that their applications run on dozens of platforms, some
being unknown or not completely specified.

Bytecode formats and just-in-time compilers have been proposed to deal with
heterogeneity. Bytecode can be deployed to any system as long as a JIT compiler
is available for each core on which the code is going to run. Application developers
do not even have to know the hardware on which their code will eventually run.
Processor virtualization, i.e. virtual machine and JIT compilers, is a mature and
widely spread technology: Java applications can be found from games in cell phones
to web servers and banking applications, and CLI [8] (the core of the .NET initiative
[16]) is growing fast. Virtualization can address the above mentioned problems: it
reduces the burden put on software developers who no longer need to deal with vary-
ing hardware, it guarantees that application lifetimes can span several generations
of hardware, and, to some degree, it makes it possible for old code to exploit new
hardware features.

1.2 Exploitation of Word-Level Parallelism

The careful exploitation of SIMD instructions is crucial for the performance of many
applications. All major instruction sets provide SIMD extensions (SSE on x86 pro-
cessors, Altivec on PowerPC, VIS on Sparc, etc.), and keep adding new vector in-
structions (SSE4.1, SSE4.2, SSE4a). Even though significant progress has been made
in the recent years, good auto-vectorization is still an open difficult problem. This
is illustrated by the abundance of literature [1, 3, 14, 17], the ongoing work in open
source compilers like GCC, or simply the existence of source-level builtins that let
programmers insert instructions by hand when the compiler fails to detect a pattern.

Auto-vectorization is a complex optimization for several reasons:

– strong conditions must be met by the code, in particular in terms of data de-
pendencies;

– for better applicability, one wants the optimization to also apply to outer loops
and to handle strided accesses and other complex patterns;

– each particular instruction set has a very specific set of vector instructions, and
associated constraints [17]: required alignment, available registers, etc.

1.3 Putting Things Together

If static compilers have a hard time vectorizing loops, the situation is much worse
for JIT compilers. A simple look at the vectorizer in GCC gives an idea — more
than 20,000 lines, not counting data dependence analysis and the construction of the
SSA form. The complexity of the analysis and transformation makes the vectorizer
unfit for JIT compilers which are often running on memory and CPU constrained
environments.

Conversely, statically auto-vectorizing loops for a bytecode representation is chal-
lenging because the actual features and constraints of the execution platform are
unknown at compile-time. At run-time, SIMD extensions might not be available.

In this paper, we investigate how processor virtualization and auto-vectorization
can be reconciled. We make three contributions:

1. we show that vectorized bytecode is a viable approach, that can yield the ex-
pected speedups in the presence of SIMD instructions, and a minor penalty in
its absence;

2. we measure the performance of loop kernels on several architectures, we ana-
lyze the interaction between the static and the JIT compilers and we provide
suggestions for a good performance of vectorized bytecode;

3. we describe our modifications to the CLI port of the GCC compiler to emit
vectorized bytecode, and we make them publicly available in the GCC repository.

This paper is organized as follows. Section 2 presents the high level view and
rationale of our approach, while Section 3 goes over the details of the implementation.
We develop our experiments and our analyses in Section 4. Related work is reviewed
in Section 5 and we conclude in Section 6.

2 Reconciling Processor Virtualization and
Auto-vectorization

This paper uses or refers to compilation and optimization techniques, such as func-
tion inlining, loop unrolling, data dependence analysis, SSA form. We did not in-
troduce any new technique per se, but rather we take them for granted and we use
them. The interested reader can refer, for example, to [15].

2.1 Split-Compilation

Our proposal builds on top of the idea of split-compilation. Split-compilation refers to
the fact that a given source code undergoes two compilation steps before it becomes
machine code.

1. The first step translates source code to bytecode. This happens on the program-
mer’s workstation. This means that the resources available to the compiler are
virtually unlimited: gigahertz, gigabytes and minutes of compile-time are com-
mon. However, no assumption can be made on the actual platform on which the
application will eventually run.

2. The second step converts the bytecode to machine code. It happens just-in-
time, i.e. on the final device and at run-time. Resources are likely to be limited,
especially on an embedded system like a cell phone or a DVD player. Compile-
time is also visible to the end-user, and thus it must be kept as small as possible.

The key of split compilation is to move as much complexity as possible from the
second step to the first one [19]. The first pass is in charge of all target independent
optimizations. Target specific optimizations obviously cannot be applied. Expensive
analyses, however, can be run, and their results encoded in the bytecode, so that
the JIT compiler can directly benefit from their outcome.

2.2 Vectorized Bytecode

Previous work by Leśnicki et al. annotated the bytecode to mark the variables and
types of interest to the JIT compiler (see Section 5 for more details). We believe that
this kind of annotation was rather difficult to generate and left too much work to
the online vectorizer. Instead, we choose a more drastic approach: the information
that a loop can be vectorized is the vectorized loop itself. All the expensive loop
transformation is done in the first pass, and we make sure that it can be undone at a
low cost if necessary. It is cheaper (at run-time) to undo a speculative vectorization
than to do it when necessary.

As further explained in Section 3, we base our work on the CLI format. However,
it is very important that we do not extend the format itself. The vectorized bytecode
we produce must run unmodified on any CLI compliant virtual machine. Vector
information is expressed by means of new types and methods. Vector operations in
the user code appear as method invocations.

We need to achieve three objectives:

1. in the presence of SIMD extensions in the instruction set, a JIT compiler aware
of our optimization must produce fast machine code;

2. in the absence of SIMD extensions, or when using any other JIT compiler, the
code must run correctly; and

3. the penalty when running vectorized bytecode without SIMD support (whether
in the JIT compiler or in the instruction set) must be minimum.

All three objectives are made possible by the dynamic code generation mecha-
nism. Point 1 is “simply” a different code generation. The static and JIT compilers
must agree upon a naming convention for special types and methods. When a call
to such a method is encountered, a specialized instruction pattern is emitted, in-
stead of a call. Figure 1 illustrates this for a simple vector addition. Column (a)
shows the C code for this simple loop. Column (b) shows a part of the loop once
translated to CLI bytecode. Bear in mind that the execution model relies on an
execution stack. Vector4f is a type defined in a library that represents a vector
of four single precision floating point numbers. ldloc ’b’ places the address of a
vector element on the stack. ldobj consumes the address and loads the element on
the stack. The same is true for element c. The method Add is then called to perform
the addition. The result is stored at the address initially pushed on the stack by the
ldloc ’a’ instruction. The remaining instructions increment the induction variable

f loat a [N] ;
f loat b [N] ;
f loat c [N] ;
for (i =0; i<n ; ++i)
{

a [i]=b [i]+c [i] ;
}

ldloc ’ a ’
ldloc ’b ’
ldobj Vector4 f
ldloc ’ c ’
ldobj Vector4 f
ca l l Vector4 f : : Add
stobj Vector4 f
ldloc ’ a ’
ldc . i 4 16
st loc ’ a ’

. . .

movups (% e s i) ,%xmm0
movups (%ecx) ,%xmm1
addps %xmm1,%xmm0
movups %xmm0,(%eax)
add $16 , %ecx
add $16 , %e s i

. . .

f l d s (%ebx)
f l d s (%ecx)
faddp %st ,% s t (1)
f l d s 0x4(%ebx)
f l d s 0x4(%ecx)
faddp %st ,% s t (1)
f l d s 0x8(%ebx)
. . .
f s t p s 0x8(%eax)
f s t p s 0x4(%eax)
f s t p s (%eax)

(a) C source code (b) CLI bytecode (c) x86 with SSE (d) x86 without SSE

Fig. 1. Code generation schemes

a. When translating this bytecode (column (c), showing x86 assembly code [10]), the
JIT compiler recognizes the type Vector4f and it emits a movups instruction that
targets an SSE register. Similarly, Add is recognized, and a single addps instruction
is emitted.

Point 2 consists in providing a library which implements all the functions defined
by the naming convention. A compiler unaware of the special semantics will emit
regular code, the same way as any other code.

Point 3 combines the just-in-time code generation with inlining. We make the
assumption that JIT compilers always have the capability to inline functions. This is
not a strong assumption because bytecode and JIT compilers were initially designed
for object oriented languages, which tend to encourage small functions, including
accessors (setters/getters) and constructors. Inlining has been key for performance
since the beginning of this technology. The vector operations provided in the library
are very basic, they include arithmetic, constructors, and load or store operations.
They are good candidates for inlining. The end result after minimal cleanup is code
similar to the column (d) of Figure 1. The vector operations are effectively unrolled
by an amount equal to the width of the vector. Unrolling is known to help perfor-
mance at the expense of code size. However, we do not expect any significant code
bloat because only the small loops corresponding to vector operations are unrolled.

Vectorizing the bytecode gives another advantage: in cases when the static com-
piler is not able to generate the SIMD instructions, programmers can still manually
insert builtins in the source code, as they usually do for performance critical loop
nests. It makes no difference to the JIT compiler whether those builtins were auto-
matically generated or hand written.

2.3 Other Design Decisions

SIMD instruction sets vary a lot in number of supported idioms, expressiveness, and
constraints. Many choices can be made to best match the abstract vector represen-
tation of the bytecode to all possible instances of vector instruction sets. Because we
rely on an existing compiler (see Section 3), our choices are limited and we mostly
follow the decisions made in the GCC GIMPLE representation. For further details
about those design decisions, we refer to the discussion “Generality vs. applicability”
of [17].

Alignment Alignment constraints and realignment idioms are a typical burden of
vectorizing compilers. We face the additional problem that the static compiler does
not know whether the target supports unaligned accesses. We have two options.

– We support unaligned accesses in the bytecode. The static compiler generates
simpler code. It is up to the JIT compiler to realign memory accesses if needed.

– Or we require aligned memory accesses in the bytecode. In this case, the static
compiler generates the realignment code in the bytecode. The JIT compiler is
guaranteed to see only aligned memory accesses.

We decided for the former approach, because it generates simpler code. The latter,
while always correct, requires extra work from the JIT compiler when misaligned ac-
cesses are available: it needs to eliminate redundant checks or even entire loops that
were generated to realign accesses by peeling some iterations off the main computa-
tion loop. In the former approach, the static compiler can pass alignment information
to the JIT compiler, so that no unnecessary realignment is generated when arrays
are known to be properly aligned.

Vector Width Vector width is another parameter dictated by the architecture, hence
unknown in the static compiler. We take the following approach: since most archi-
tectures have 128-bit wide vector operations, this is the width we vectorize for. An
architecture with a different vector width, like the upcoming AVX or Larrabee)
will fall back on the scalar implementation as described in this section. A smarter
JIT compiler could try adjust to the actual width, but this needs additional data
dependence analysis at run-time, or extra annotations that specify the maximum
vectorization factor for each loop.

Multiversioning We could have made the choice to generate two versions of each
loop: a vectorized one, and a scalar one. The consequence, however, is that the
static compiler should use a reduced set of vector instructions, unless it runs the risk
that the vectorized code is too specialized and never runs on many architectures.
Another option is to generate more than two versions of the same loop (a technique
generally called multiversioning), to adjust to most targets. Obviously the cost is
code size increase. Generating several versions of each vectorizable loop in not even
an option for embedded systems, for example.

Our approach has the advantage that it exposes all the opportunities to the JIT
compiler in a single version of the loop, while letting it gracefully handle the patterns
that do not have hardware support.

3 Implementation

Proper evaluation of our proposal requires aggressive static and JIT compilers to
make sure that results are not biased because of poor optimizations unrelated to
our focus. Compilers — static and JIT — are huge pieces of software. We leveraged
two open-source software projects: GCC for the static compiler, and Mono for the
virtual machine and JIT compiler.

We chose to implement our experiments in the GCC compiler for several reasons
beyond the availability of the source code. The good quality of the generated code

makes the results trustworthy, and the well documented auto-vectorizer [18], despite
its internal complexity, is easy to retarget thanks to the GCC machine model.

We have shown that the CLI format is appropriate for deployment onto embedded
systems [4, 6]. CLI is a standard format [8], which means that it is more likely to
be portable to various architectures. In fact, several commercial and open-source
projects already provide execution environments for the CLI format (see Section 5).

We previously developed a GCC back-end for the CLI format [5, 20], however
with very limited support for vector types. One of the contributions of this work is
to add vectorization capabilities to the CLI back-end. It is publicly available in the
branch st/cli-be of the GCC repository.

3.1 Machine Model Technicalities

Activating the GCC vectorizer consists in modifying a few places in the machine
description files. First we need to globally instruct the compiler that vector modes
are supported by defining the function cil32_vector_mode_supported_p.

Then, we need to provide the width of the available vector types. This is accom-
plished through the macro UNITS_PER_SIMD_WORD.

Ideally, the CLI machine description does not need any register at all, since oper-
ations are carried on the evaluation stack, and the set of local variables (CLI locals)
used to store values is infinite, making register allocation a non-issue. Still, GCC
needs a minimal set of registers for its own mechanics. In particular, the largest mode
that can be produced by the vectorizer is computed from the largest set of contiguous
registers in the same class. The existing machine description defined only one 32-bit
register, thus making vectorization impossible. We increased the number of available
registers by modifying the macros FIXED_REGISTERS and CALL_USED_REGISTERS. We
also modified FIRST_PSEUDO_REGISTER accordingly.

Finally, we simply add the definition of the supported vector modes and all the
supported arithmetic instructions to the machine description file cil32.md, as well
as the special movmisalign instruction used by GCC to generate misaligned accesses.

3.2 Intermediate Representation

We keep the GIMPLE representation, and the vectorizer as a whole, unmodified.
Vector types are produced by the vectorizer as usual, based on the information
derived from the machine model. The differences appear in the stack based interme-
diate representation (IR), introduced in [20] to replace RTL in the CLI back-end.
This representation was shown to be better for emitting CLI for two main reasons:
it has a concept of evaluation stack, and it is strongly typed, a necessary condition
to emit correct CLI.

Most vector operations are eventually translated in the bytecode as calls to well
defined library functions (builtins). However, function calls tend to make the code
more difficult to analyze and optimize. For this reason, we try to postpone the
emission of the builtins as much as possible. In particular, we rely on the existing
policy in GIMPLE and the stack-based IR assuming that arithmetic operators are
polymorphic: we do not add any new arithmetic nodes operating on vectors. Rather,
we extend the semantics of existing operators to accept the new vector types.

We handle the vector constructors (the CONSTRUCTOR GIMPLE node), with a
new IR statement named VEC_CTOR. To distinguish vector loads and stores, we also
introduce a LDVEC and a STVEC instruction. Similarly to GIMPLE, we introduce new
statements for operators which do not have any scalar equivalent, for example the
dot product, or the saturating arithmetic.

We add a pass just before the CLI emission to recognize the vector statements
and to transform them to calls to builtins. This pass walks over all the statements of
a function, and computes the status of the stack before each of them (this is always
possible without dataflow analysis thanks a special constraint of the CLI format, see
§ III, 1.7.5 of [8]). Arithmetic statements that operate on vector types are replaced
by the corresponding builtin. Constructors and LDVEC STVEC are rewritten.

3.3 Execution Environment

We used Mono [13] as our execution platform. Mono is an open development initiative
to develop a UNIX version of the Microsoft .NET environment. It contains a CLI
virtual machine — complete with a class loader, a JIT compiler and a garbage
collector — as well as a class library and a compiler for the C# language. In this
project, we rely on the JIT compiler of the VM.

The Mono environment contains the library Mono.Simd.dll. It defines all the
128-bit vectors types (four single precision floats, four 32-bit integers, eight 16-bit
integers, etc.), and the basic arithmetic operations on them. A source implementation
of the types and methods is provided in C#, and compiled to CLI. This code is used
as a backup for JIT compilers unaware of the special naming convention. We rely on
the naming convention defined by Mono in this library. On the x86 platform, Mono’s
JIT compiler recognizes the special semantics. Many other platforms are supported
by Mono, but the SIMD extensions are not implemented yet.

4 Experiments and Analysis

This section presents our experiments with some loop kernels. It shows how initial
results were far from acceptable, and it analyzes what are the minimum conditions
to produce efficient code.

4.1 Setup

Our goal is to illustrate the advantage of vectorizing bytecode. The focus in on
the specificities of target independent bytecode. Effectiveness of vectorization as
an optimization technique is not the point of our work, it has been proved already
elsewhere, and we take it for granted, as any other optimization mentioned in this
paper. For this reason, we decided to show some results only on small kernels that
illustrate the key features of vectorization. Using real application would only blur
the specific behaviors we are interested in. We use the same benchmarks as [17].
See Table 1 for a short description. They cover several data types and type sizes
(single precision floating point, 8-bit and 16-bit integers). They also illustrate various
features of the vectorizer: simple arithmetic, reductions, use of a constant. All kernels
operate on arrays of 1000 elements, except sum u8 and sum u16 which operate on

Name Description Data type Features

vecadd fp addition of two vectors floating point arithmetic
sdot fp dot product of two vectors floating point reduction
saxpy fp constant times a vector plus a vector floating point constant
dscal fp scale a vector by a constant floating point constant
max u8 find maximum over elements of a vector 8-bit char reduction
sum u8 sum the elements of a vector 8-bit char reduction
sum u16 sum the elements of a vector 16-bit short reduction

Table 1. Description of the benchmarks

10,000 elements to keep the running time in the order of a few seconds. Each kernel
is also wrapped by a main loop that executes many times.

Since those benchmarks, from the BLAS suite, are written in Fortran, we wrote
a straightforward implementation in C. We used the latest release of Mono at the
time of writing: version 2.4.2.3. The CLI backend is based on GCC version 4.4. In
order to demonstrate both the performance advantage and the portability, we run
our experiments on several hardware platforms:

– a desktop PC featuring an Intel Core2 Duo clocked at 3 GHz — supporting the
SIMD extensions MMX, SSE, SSE2, SSSE3 — running Linux 2.6.27;

– a Sun Blade 100 featuring a TI UltraSparc IIe, clocked at 500 MHz, running
Linux 2.6.26.

Note that, even though the UltraSparc has a SIMD instruction set extension VIS,
the Mono JIT compiler does not exploit these extensions yet. It does support the
SSE extension on the x86 architecture. We also simulate an x86 platform without
SIMD support by running the experiments on the same desktop PC and by disabling
the SIMD intrinsics recognition.

4.2 Initial Results

In this first experiment, we run the benchmarks with three configurations on the
x86 platform. In all cases of Table 2, the C programs are compiled to bytecode, and
the bytecode is run by the Mono JIT compiler.

1. Firstly, we generate the bytecode without the vectorizer. That is, we use GCC
with the command line flags -O2 -fno-tree-vectorize (note that, as of today,
-O2 would be sufficient since the vectorizer is only enabled at -O3). This gives
us our baseline, reported in the column scalar of Table 2.

2. Secondly, we compile the benchmarks again, with the vectorizer enabled, using
-O2 -ftree-vectorize. Running times are reported in the columns vectorized
as absolute values and as performance relative to the scalar version (defined as
the scalar base time divided by the new time). The next column, labeled max
indicates the rough maximum speedup one would naively expect, based on the
data type.

3. Finally, the vectorized bytecode produced in the previous step in run again, but
without SIMD support in the JIT compiler. On x86, this is achieved by adding
the flag --optimize=-simd to Mono.

benchmark scalar vectorized no SIMD
time time rel. perf. max time rel. perf.

vecadd fp 1893 815 2.3 4 4475 0.42
sdot fp 3039 3039 1.0 4 3039 1.0
saxpy fp 2429 1224 2.0 4 8531 0.28
dscal fp 1921 733 2.6 4 4122 0.47
max u8 3156 346 9.1 16 6101 0.52
sum u8 9030 2613 3.5 16 32528 0.28
sum u16 9334 5223 1.8 8 42339 0.22

Table 2. Initial performance results on x86 (106 iterations, time in ms)

benchmark scalar previous no SIMD
time rel. perf. time rel. perf.

max u8 3156 0.52 5185 0.61
sum u8 9030 0.28 20569 0.44
sum u16 9334 0.22 27565 0.34

Table 3. Performance results on x86, with inlining

At first glance, we can make the following high-level comments:

– sdot is not vectorized. This is confirmed by the activating the vectorizer’s debug-
ging messages. Figuring out the cause of this missed optimization was beyond
the scope of this paper, and we omitted sdot in the rest of this paper.

– The vectorized bytecode shows significant speedups, ranging from 1.8 to 9.1.
– Even though the speedups are high, one might expect even more: 32-bit float-

ing point values packed in 128-bit vectors gives an upper bound value for the
speedup of 4 for the benchmarks vecadd, saxpy, dscal. The kernels max u8 and
sum u8 operate on 8-bit integers, let us expect a 16x speedup. max u8 achieves
a reasonable score of 9.1, but sum u8 obviously has a problem.

– The performance of the vectorized code run without SIMD support is unaccept-
able, with relative performance in the range 0.22 to 0.52.

4.3 Missed Inlining

We first look at the disastrous performance of the code in the absence of SIMD
support, especially the bottom two kernels of Table 1. It turns out that the function
which implements the vector operation (sum or max) is not inlined as we expected.
It is inlined in the case of the floating point kernels. We found out that the coding
style in Mono.Simd differs according to the size of the vector: 4-element vectors
arithmetic (e.g. floating point) is implemented as four sequential statements, while
8-element and more vectors are implemented with a loop. This loop changes the
outcome of the inlining heuristic of the JIT compiler. We rewrote the code of the
library and reran those three tests, obtaining the numbers of Figure 3.

Unfortunately, the call to max is still not inlined, but we still obtain slightly better
code for max u8. Even though the slowdown of the sum kernels is still unacceptable,
the improvement is also noticeable.

benchmark scalar vectorized no SIMD
time time rel. perf. max time rel. perf.

vecadd fp 1197 537 2.2 4 1228 1.0
saxpy fp 1544 724 2.1 4 1890 1.2
dscal fp 1045 657 1.6 4 1095 1.0
max u8 3541 227 15.6 16 3735 1.1
sum u8 6707 1277 5.3 16 8925 1.3
sum u16 6710 2547 2.6 8 8198 1.2

Table 4. Final results on x86

4.4 Manual Improvements

We then take advantage of the tracing capabilities of the JIT compiler and we dump
the code emitted for vecadd for manual inspection. Functions calls are effectively
inlined, however the resulting x86 code looks extremely poor. The loop contains 91
instructions. In comparison, the emitted code for the scalar version is 12 instructions
long. Since combining vectorization and inlining amounts to unrolling the loop four
times, one would expect in the order of 48 instructions, not taking into account
induction variable simplification. Careful analysis shows that the input values (the
vector elements) are copied twice in the function stack frame before being loaded in
the floating point unit, and the output values are copied three times on their way
from the floating point unit to their final destination. Our hypothesis is that the JIT
compiler is missing a simple pass of copy propagation and dead code elimination
after inlining.

We manually optimize the code produced by Mono, and link it again with the loop
driver in the main program1. Since the loop is a single basic block, copy propagation
and dead code elimination are straightforward, and very much within the capabilities
of a JIT compiler. Running the experiment again, we measure 1228 ms, which is 3.6
times faster that the original. We apply the same simple cleanup to all vectorized
benchmarks, we obtained improvements ranging from 3.6 to 5.2, with the exception
of max u8 which scores “only” 1.6 because of the presence of the function calls.

In the interest of fairness, we apply the same simple manual code optimizations
on all the generated versions of the loops of Table 2: scalar, vectorized, and vectorized
without SIMD support. The consolidated results are presented in Table 4.

4.5 UltraSparc

We run the same set of experiments on the UltraSparc workstation, with the ex-
ception that Mono does not implement the SIMD code generation for this processor
yet. All the finding on the x86 architectures have their counterpart on the Ultra-
Sparc, which is not surprising since the JIT compiler engine is the same. Because of
the RISC nature of the UltraSparc, loading a long immediate in a register requires
two instructions, and the address computation of an array element requires a third

1 In doing this, we potentially bias our results by omitting the compile-time of the JIT
compiler. We verified that this is not the case: Mono reports compiling time below 0.25 ms
for each of our loop kernels.

benchmark automatic after manual cleanup
scalar vectorized rel. perf. scalar vectorized rel. perf.

vecadd fp 4215 11193 0.38 2810 1947 1.4
saxpy fp 5216 21011 0.25 3812 3239 1.2
dscal fp 3642 10687 0.34 2608 1787 1.5
max u8 3151 8613 0.37 3032 3188 0.95
sum u8 10022 65864 0.15 8019 8559 0.94
sum u16 10756 109866 0.10 8788 11256 0.78

Table 5. Final performance on Sparc, 105 iterations, time in ms

instruction for the addition. Since the first two instructions load a constant address,
they are loop invariant and it was an additional obvious manual optimization to
hoist them outside the loop. Table 5 shows the final results.

Speedups come from the fact that inlining the vector operations is similar to
unrolling the small loops. In the case of the reduction kernels, this speedup is offset
by the reduction epilogue and the less-than-optimal code generation.

4.6 Final Comments

The optimizations we run manually are basic compiler optimizations, which run in
linear time. They are by no means out of reach of a JIT compiler. It should simply
be a matter of running them again before code emission.

The generated vectorized code can be further improved, beyond our manual
cleanup. In particular, intermediate results are continuously loaded and stored on
the stack at each iteration. The scalar version manages to keep intermediate values
in registers. Inductions variables are not optimized in the vectorized code as aggres-
sively as in the scalar code. Those reasons explain why the floating point benchmarks
do not reach a better speedup.

Reduction kernels are impacted by another problem. An epilogue performs the
final reduction over the 8 or 16 elements of the vector result. This code is less
optimized than the loop body, and it impacts to total performance. Adding new
builtins for horizontal operations (like the sum of the elements of a vector) could
help the JIT compiler generate better code even for the epilogue.

5 Related Work

Bytecode formats and JIT compilers have existed for decades. CLI has recently
drawn a lot of attention. Many projects exist, both commercial and open source.
Microsoft proposed the .NET [16] framework. Mono [13] has been presented in Sec-
tion 3. ILDJIT [2] is a distributed JIT compiler for CLI. LLVM [11] is a compiler
infrastructure that defines a virtual instruction set suitable for sophisticated trans-
formation on object code.

The original work in the GCC auto-vectorizer has been presented by Nuzman
and Henderson in [17, 18]. They showed how the vectorizer algorithms can be imple-
mented in a target-independent way, and driven by the compiler machine model. In

their approach, the generated code is target-dependent, while in ours even the gen-
erated code is target-independent. We postpone the specialization to the run-time.

Leśnicki et al. [12] proposed to annotate the CLI bytecode with information to
help the run-time vectorizer. In that approach, the vectorization happens at run-
time, but the static compiler does the analysis and hints at the interesting loops.
However, marking all the relevant loops and variables with the appropriate and
usable information, while keeping legal CLI code, proved difficult. In this paper, we
propose to entirely apply the vectorization in the static compiler, and to possibly
revert to scalar code when necessary.

El-Shobaky et al. [9] also propose to apply the vectorization at run-time. They
unroll loops to duplicate loop bodies, and they modify the code selector of the
JIT compiler to group corresponding instructions using tree pattern matching tech-
niques. However only a small number of operators are supported, and the number of
additional rules in the code selector will grow rapidly when more complex patterns
are needed. The approach also suffers a number of limitations, as described in the
paper.

Vector LLVA [1] is similar to our approach, but for the LLVM instruction set.
However, in contrast to our proposal, the authors do extend the bytecode itself,
breaking the compatibility, and they do not investigate the behavior of vector code
on non-SIMD machines.

Clark et al. propose to rely on a simple dynamic translation mechanism to rec-
ognize the instruction patterns that can be vectorized (those patterns have been
produced by scalarizing the output of a vectorizing compiler). They are able to han-
dle data widths increases. The solution, however, is entirely in hardware and thus
limited in the size of the instruction window in which it can recognize patterns.

6 Conclusion

In this paper, we propose a scheme to reconcile platform neutral binary formats like
bytecodes, and the careful exploitation of SIMD extensions of instruction sets.

Our contribution is three fold: first, we added vectorization capability to the GCC
CLI backend and we made our developments publicly available. Second, we showed
that vectorized bytecode is a viable approach to deliver performance in the presence
of SIMD instructions while not incurring any penalty on non-SIMD instruction sets.
And third, we analyzed under what conditions the bytecode produced by the static
compiler can be efficiently executed on various processors. In particular, the JIT
compiler must guarantee that some basic optimizations will be run in order to not
to degrade the performance.

References

1. Robert L. Bocchino, Jr. and Vikram S. Adve. Vector LLVA: a Virtual Vector Instruction
Set for Media Processing. In VEE’06, pages 46–56, June 2006.

2. Simone Campanoni, Giovanni Agosta, and Stefano Crespi Reghizzi. A parallel dynamic
compiler for CIL bytecode. SIGPLAN Not., 43(4):11–20, 2008.

3. Nathan Clark, Amir Hormati, Sami Yehia, Scott Mahlke, and Krisztian Flautner.
Liquid SIMD: Abstracting SIMD hardware using lightweight dynamic mapping. In
HPCA’07, pages 216–227, Washington, DC, USA, 2007.

4. Marco Cornero, Roberto Costa, Ricardo Fernández Pascual, Andrea Ornstein, and
Erven Rohou. An experimental environment validating the suitability of CLI as an
effective deployment format for embedded systems. In Conference on HiPEAC, pages
130–144, Göteborg, Sweden, January 2008. Springer.

5. Roberto Costa, Andrea C. Ornstein, and Erven Rohou. CLI back-end in GCC. In
GCC Developers’ Summit, pages 111–116, Ottawa, Canada, July 2007.

6. Roberto Costa and Erven Rohou. Comparing the size of .NET applications with native
code. In 3rd Intl Conference on Hardware/software codesign and system synthesis, pages
99–104, Jersey City, NJ, USA, September 2005. ACM.

7. Koen De Bosschere, Wayne Luk, Xavier Martorell, Nacho Navarro, Mike O’Boyle, Dion-
isios Pnevmatikatos, Alex Ramirez, Pascal Sainrat, André Seznec, Per Stenström, and
Olivier Temam. High-Performance Embedded Architecture and Compilation Roadmap,
volume 4050 of LNCS, pages 5–29. 2007.

8. ECMA International, Rue du Rhône 114, 1204 Geneva, Switzerland. Common Lan-
guage Infrastructure (CLI) Partitions I to IV, 4th edition, June 2006.

9. Sara El-Shobaky, Ahmed El-Mahdy, and Ahmed El-Nahas. Automatic vectorization
using dynamic compilation and tree pattern matching technique in Jikes RVM. In
ICOOOLPS ’09: Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, pages 63–69,
New York, NY, USA, 2009. ACM.

10. Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual, February 2008.
11. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In CGO’04, Palo Alto, California, Mar 2004.
12. Piotr Leśnicki, Albert Cohen, Grigori Fursin, Marco Cornero, Andrea Ornstein, and

Erven Rohou. Split compilation: an application to just-in-time vectorization. In
GREPS’07, in conjunction with PACT, Braşov, Romania, September 2007.

13. The Mono Project. http://www.mono-project.com.
14. José M. Moya, Javier Rodŕıguez, Julio Mart́ın, Juan Carlos Vallejo, Pedro Malagón,

Álvaro Araujo, Juan-Mariano Goyeneche, Agust́ın Rubio, Elena Romero, Daniel Vil-
lanueva, Octavio Nieto-Taladriz, and Carlos A. López Barrio. SORU: A reconfigurable
vector unit for adaptable embedded systems. In ARC ’09: Proceedings of the 5th Intl.
Workshop on Reconfigurable Computing: Architectures, Tools and Applications, pages
255–260, 2009.

15. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

16. Microsoft .NET. http://www.microsoft.com/NET.
17. Dorit Nuzman and Richard Henderson. Multi-platform auto-vectorization. In CGO’06,

pages 281–294, Washington, DC, USA, 2006. IEEE Computer Society.
18. Dorit Nuzman and Ayal Zaks. Autovectorization in GCC – two years later. In GCC

Developers’ Summit, pages 145–158, June 2006.
19. Erven Rohou. Combining processor virtualization and split compilation for heteroge-

neous multicore embedded systems. In Emerging Uses and Paradigms for Dynamic
Binary Translation, number 08441 in Dagstuhl Seminar Proceedings.

20. Gabriele Svelto, Andrea Ornstein, and Erven Rohou. A stack-based internal represen-
tation for GCC. In GROW’09, pages 37–48, Paphos, Cyprus, 2009.

