
Extending GCC with a multi-grain parallelism

adaptation framework for MPSoCs

Nicolas BENOIT and Stéphane LOUISE

CEA LIST, Embedded Real Time Systems Laboratory,
Point Courrier 94, Gif-sur-Yvette, F-91191 France

{firstname.lastname}@cea.fr

Abstract. Multiprocessor-System-on-a-Chip architectures offer multi-
ple granularities of parallelism. While harnessing the lowest levels by
means of vectorization and instruction scheduling only requires local in-
formation about the code and one of the cores, coarser levels raise inter-
dependent trade-offs which necessitate a global approach.
This paper introduces Gomet: an extension to GCC which combines a
hierarchical intermediate representation of the input program and a high-
level machine description to achieve multi-grain parallelism adaptation.
Gomet builds this representation from an inter-procedural dependence
analysis, and transforms it to fit the target hardware. Then, it generates
specialized C source files to feed the native compiler of each core of the
target. Early evaluation of Gomet with simple programs show encourag-
ing results and motivate further developments.

1 Introduction

On-going research on the programming of emerging massively parallel architec-
tures [1–4] has brought new languages, new programming models and revived
interests in automatic parallelization techniques [5–7]. However, by decoupling
parallelism expression from the target architecture, a new abstraction gap be-
tween the software and the hardware has been created. To succeed in the simpli-
fication of parallel programming and achieve portability, compilation tools (with
the possible help of runtime libraries) must bridge that gap. In other words, the
high-level parallelism abstraction must be adapted (or lowered) to the hardware
features available.

Multiprocessor-System-on-a-Chip architectures (MPSoCs) support multiple
levels of parallelism and offer specialized processing units [1, 3]. Consequently,
the possible mappings of a program to a given architecture vary in different per-
formance metrics: execution time, memory footprint, communication volume,
energy consumption. At the finest levels of parallelism (SIMD, MIMD), the
inter-dependent trade-offs raised can be solved locally, and are supported by
most compilers. On the other side, the efficient handling of coarser granulari-
ties requires in the compilation flow a confrontation between the whole program
and the target architecture. Figure 1 provides an illustration of such holistic
parallelism adaptation in the compilation flow.

Parallel

Language

Compiler

Parallelism

Back-end

Parallel

Language

Source Files

Program

Representation

With All

Parallelism

Exposed

Parallel

Machine AB

Description

Machine A

Description

.C

Source Files

Source Files

Machine B

Compiler

Machine A

Compiler

Merge

Tool

Parallel

Executable

Machine A

Code

Machine B

Code

2.Parallelism adaptation1.Parallelism expression 3.Machine code generation

Machine B

Description

Feedback

Loop

Sequential

Language

Source Files

Parallelizer

Fig. 1. Compilation flow integrating parallelism adaptation.

The first step consists in capturing as much parallelism as possible in the
input program. This can be achieved either with an automatic parallelization
tool or by providing specific language constructs to the programmer. During
the second step, a parallelism back-end adapts the exposed parallelism to the
physical execution resources of the target architecture. Finally, for each type of
execution resource, a set of separate source files is generated and processed with
the native compilation tools (step 3). In an iterative compilation scheme, the
latter can guide the parallelism back-end by providing feedbacks.

Our research work investigates the coupling of the parallelism back-end with
native compilers for MPSoCs. Among others, we are interested in the support
of hardware mechanisms such as weak synchronization [8] between processing
units, and the automatic accounting of heterogeneous resources.

To experiment with parallelism adaptation, we are developing a new ex-
tension to GCC called Gomet. Its front-end builds a hierarchical intermediate
representation of the input program. Its back-end confronts the obtained repre-
sentation with a high-level machine description and generates specialized parallel
C source files.

This paper describes the general architecture of Gomet and is organized
as follow: section 2 presents the related work, section 3 details the front-end
internals, section 4 presents the parallelism back-end code generator, and section
5 shows the results obtained as the development reaches its first milestone.

2 Related Work

Harnessing the massive parallelism offered by current and forthcoming archi-
tectures is a long-term and very active field of research. Among the numerous
propositions to enhance the support of parallelism in the compilation flow [9–14],
this section presents the work which share the most similarities with Gomet.

2.1 Outside GCC

The OSCAR Compiler [9] integrates a multi-grain parallelizer based on the
macro-dataflow [15] program representation. The macro-dataflow is a directed
hierarchical graph which describes macro-tasks and their data dependencies at
various levels of granularity: subroutine calls, repetitive blocks and statements.
The compiler schedules the graph on the target architecture and uses a high
level API [16] to abstract hardware mechanisms. This API comprises energy
consumption controls and a subset of OpenMP [17]. After its translation by a
target dedicated back-end, the native compiler can produce the final executable.

The ACOTES [10] research project aims at providing programmers with
a stream-oriented programming environment. It defines a set of directives ex-
tending OpenMP in order to abstract stream management. Those directives
are processed with the Mercurium source-to-source compiler [18] which replaces
directives with calls to a dedicated library. It relies on a high-level machine de-
scription and a simulator to schedule the streams on the available resources and
operate transformations such as task fusion. The output of the source-to-source
compiler is processed by GCC in order to produce the final program.

Sage++ [19] is used to pre-process extended C++ with data-parallel con-
structs (pC++). It generates standard C++ code later compiled by the native
compiler and linked to a machine-specific runtime system.

The Stream Virtual Machine [20] is a high-level machine description which
captures the main features of stream processors. It comprises a machine model
and a high-level API, which abstract computation and data partitioning, com-
munication and synchronization.

The reader may find case studies of adaptation of stream programs to existing
architectures in [21–23].

2.2 Inside GCC

Current versions of GCC support OpenMP 3.0 directives through libgomp. It
is notably exploited by the automatic parallelization pass autopar which adds
appropriate Gimple OMP statements (and cost estimation) each time the loop
analysis detects a parallel loop. Towards supporting the pipeline parallel con-
struct, Pop et al. recently presented automatic streamization [24].

Gomet experiments the integration of a hierarchical program representation
into GCC and the generation of parallel C source code from it. This hierarchical
representation allows the adaptation of the program at multiple levels of granu-
larity. The transformation is driven by a generic process tuned by target-specific
cost-models and program transformations.

3 Generation of a Hierarchical Intermediate

Representation

This section introduces Gomet’s front-end and how it generates a hierarchical
intermediate representation of the input program, referred as Kimble, and cap-

tures as much information as possible about the available parallelism. Figure 2
shows where it is inserted in GCC flow.

Gomet Front-end
(builds annotated hierarchical dependence graph)

GCC Front-end & Middle-end
(may use LTO to support multiple input source files)

Source

File(s)

Gimple I.R.
Kimble I.R.

Inter-Procedural

Data Dependence

Analysis

High-level Passes

(SSA, Graphite, ...)

Link Time

Optimization
Front-end Code characterization

Fig. 2. Insertion of Gomet’s front-end into GCC flow.

Currently, Gomet is implemented as one of the -O1 optimization passes
of passes.c. It requires the -fgomet command line switch to be activated. For
each function present in a source file, the optimization passes sequence is inter-
rupted before lowering Gimple I.R. to RTL. When the last function definition is
reached, Gomet enters its processing chain. Among other high-level GCC opti-
mization passes, Gomet benefits from the Static-Single-Assignment (SSA) form
and Graphite loop transformations. The first one simplifies scalar data depen-
dences by preventing multiple assignments of the same variable. The second
one reduces the number of loop-carried dependences. Therefore, Gomet assumes
that parallelism at the statement and loop levels is exposed and requires no
further transformations. In order to cover coarser granularities of parallelism, it
integrates an inter-procedural data-dependence analysis.

3.1 Inter-Procedural Data-Dependence Analysis

To push parallelism adaptation to its limits, the data-dependence analysis aims
at capturing all the available parallelism in the input program. This is achieved
by collecting exhaustively the memory references triggered during an emulation
of its execution.

To be correct, the analysis assumes that the program’s call graph contains
no cycle and that all loop bounds and data are defined. Undefined functions are
tolerated to the condition they use no data outside their own scope, this holds
for arithmetic functions such as sin(), sqrt(), etc. Though restrictive, those as-
sumptions are acceptable for this prototyping work. Moreover, they fit in the
deterministic parallelism context of embedded systems which our research ad-
dresses.

Memory Access Formula. Prior to the analysis, a program parsing pass
builds a virtual memory address space and associates a unique address to each
data declared. Then, for each data access, a formula that will allow to compute
the corresponding memory address can be established. The formulas are symbolic
and contain unknown values at the time of their building. Currently, formulas
support referencing, dereferencing, array indexing and composition (for example

structure fields accesses). Each formula is coupled with the number of bytes the
access reads or writes.

Program Tree. The analysis abstracts the program as a tree, which can contain
five types of nodes: function call, loop, iteration, basic-block and statement. The
root of the tree is the root of the call-graph (for example the main() function),
it corresponds to the coarsest level of granularity. The leaves are statements,
which represent the finest level of granularity.

Processing. The analysis processes the tree depth-first, following the path of
the execution flow of the program. In other words, it reaches the finest level of
granularity before processing coarser levels. It emulates the behavior of func-
tion calls, loops and simple arithmetic statements, as if the code was partially
executed. When the statement level of a branch is reached, memory accesses
formulas are evaluated. Each time the analysis finishes the processing of the
children of a node, it builds a summary of their memory accesses and a de-
pendence graph between them. A memory accesses summary classifies accessed
memory addresses into one of the three following sets: Read-Only, Read-Write,
Write-First [25].

Current Implementation. The proposed analysis exhaustively computes all
memory references in the input program and tests if they intersect. It is a simple
and reliable approach, which captures all exposed parallelism. Nevertheless, its
duration depends on the input code, requiring hours of analysis for large itera-
tion domains. For example, the initialization and the product of two 256 × 256
matrices takes about 20 minutes on an Intel Xeon clocked at 3 GHz. On the
other hand, memory usage is kept low by freeing memory accesses summaries
as soon as they have been aggregated at a coarser level of granularity. This may
allow to duplicate the contexts of large loops in order to analyze multiple itera-
tions in parallel.
In the future, the analysis could be hybridized with traditional dependency tests
or polyhedral approaches to detach its complexity from the input code. Existing
components of GCC (Graphite, OpenMP support, auto-vectorization) can help
to achieve this goal.

3.2 Gimple Encapsulation with Kimble

In order to store the information collected during the inter-procedural analysis,
the Gimple intermediate representation is encapsulated into Kimble, a hierar-
chical structure of dependence graphs. Kimble wraps Gimple at the statement
level, and adds containers that map nested constructs with coarser granularities.
Containers at the same level form a DAG where edges describe data-dependence
relationships. Other examples of hierarchical dependence graphs can be found
in [26–29, 15].

Our intermediate representation follows an organization similar to [15], but
defines six types of nodes to remain closer to the level of the C source code
that will be generated. Four of those node types come from the program tree
built during the dependence analysis. Loops can be annotated with the type of
parallelism they support: undividable, map (all iterations are independent) or
reduce (iterations expose a reduction dependence scheme).

Nodes = {Function, Loop, Region, Cluster, Statement, Call}

TreeN → (TreeN)
| TreeN ‖ TreeN

| TreeN ; TreeN

| n ∈ N

9

>

>

=

>

>

;

Dependence graph expression

Function → Function(Tree{Loop,Region})
Loop → Loop(Tree{Loop,Region})
Region → Region(Tree{Cluster,Statement,Call})
Call → Call(Tree{Function})

9

>

>

=

>

>

;

Hierarchy expression

Fig. 3. Grammar ruling Kimble structure.

Figure 3 gives an overview of the grammar ruling Kimble structure. Node
types are given in the Nodes set. Nodes at the same level are linked using ‖ and ;
operations which respectively establish parallel and sequential relationships and
express dependence. Then, legal hierarchical (a.k.a. nested) constructs can be
read as following : “A function contains a dependence graph of Loop and Region

nodes”. We may mention that Region and Cluster nodes correspond respectively
to a basic-block and an undividable (possibly empty) group of statements.

As the grammar ruling Kimble suggests, the parallelism information ex-
pressed directly map to C constructs. This eases parallelism adaptation as this
information is conserved and transparently updated during program transfor-
mation.

3.3 Example

Kimble representation is illustrated with a function extracted from the x264
[30] H.264 video encoder: sub16x16 dct(). This function performs a DCT on the
difference of two 16 × 16 matrices.

Figure 4 is a simplified Kimble representation of this function, the SSA form
was reduced in order to limit the graph size. Arrows indicate a dependence
relationship, while dotted edges represent a hierarchical link, also referred as
nesting relationship.

Within sub16x16 dct(), the representation highlights the independence of four
calls to sub8x8 dct(). Itself embeds four independent calls to sub4x4 dct(), which

void sub16x16_dct (int16_t *, uint8_t *, uint8_t *)

region

cluster //1//

statement //4//

sub8x8_dct (dct, p1, p2);
statement //4//

sub8x8_dct (dct+128, p1+8, p2+8);
statement //4//

sub8x8_dct (dct+256, p1+128, p2+264);
statement //4//

sub8x8_dct (dct+384, p1+136, p2+264);

void sub8x8_dct (int16_t *, uint8_t *, uint8_t *)statement //1//

return;

region

cluster //1//

statement //4//

sub4x4_dct (dct, p1, p2);
statement //4//

sub4x4_dct (dct+32, p1+4, p2+4);
statement //4//

sub4x4_dct (dct+64, p1+64, p2+128);
statement //4//

sub4x4_dct (dct+96, p1+68, p2+132);

void sub4x4_dct (int16_t *, uint8_t *, uint8_t *)statement //1//

return;

region

statement //1//

pixel_sub_wxh (d, 4, p1, 16, p2, 32);
loop {parallel}

for (i=0; i<=3; i=i+1)

void pixel_sub_wxh (int16_t *, int, uint8_t *, int, uint8_t *, int)

loop {parallel}

for (y=0; i_size>y; y=y+1)

region

statement //1//

return;

region

cluster //1//
loop {parallel}

for (x=0; i_size>x; x=x+1)

statement //2//

p1 = p1+(y*i_p1);
statement //2//

p2 = p2+(y*i_p2);region

statement //1//

*(diff+((x+(y*i_size))*2)) = *(p1+x) - *(p2+x);

region
loop {parallel}

for (i=0; i<=3; i=i+1)

cluster //1//

statement //4//

D_2843 = d[i][0];
statement //4//

D_2845 = d[i][3];
statement //4//

D_2847 = d[i][1];
statement //4//

D_2849 = d[i][2];

statement //4//

s03 = D_2845 + D_2843;
statement //4//

d03 = D_2843 - D_2845;

statement //4//

tmp[0][i] = s12 + s03;
statement //4//

tmp[2][i] = s03 - s12;

statement //4//

s12 = D_2849 + D_2847;

statement //4//

tmp[1][i] = (d03*2) + d12;
statement //4//

tmp[3][i] = d03 - (2*d12);

statement //4//

d12 = D_2847 - D_2849;

regionregion

cluster //1//

statement //4//

D_2867 = tmp[i][0];
statement //4//

D_2869 = tmp[i][3];
statement //4//

D_2871 = tmp[i][1];
statement //4//

D_2873 = tmp[i][2];

statement //4//

s03 = D_2869 + D_2867;
statement //4//

d03 = D_2867 - D_2869;

statement //4//

dct[i][0] = s12 + s03;
statement //4//

dct[i][2] = s03 - s12;

statement //4//

s12 = D_2873 + D_2871;

statement //4//

dct[i][1] = (d03*2) + d12;
statement //4//

dct[i][3] = d03 - (2*d12);

statement //4//

d12 = D_2871 - D_2873;

statement //1//

return;

independent subroutine calls

independent subroutine calls

sequence of

parallel loops

nested

parallel

loops
statement-level

dependences

function loop region cluster statement dependence nesting

Fig. 4. Simplified Kimble representation of the sub16x16 dct() function in x264.

contains a reference to pixel sub wxh() and two successive loops. Between braces,
the loops are tagged as being parallel. Between double slashes, the statements
are annotated with their concurrency level metric, collected during code charac-
terization.

3.4 Code Characterization

In order to hint the parallelism mapping decisions, a few static information are
collected and decorate the nodes of the Kimble tree. It includes for example the
number of integer operations, the volume of data written, etc.

Another metric used for code characterization is the concurrency level sup-
ported by each node. It corresponds to the minimum number of nodes that can
be executed concurrently at the same hierarchy level. It is computed using the
dependence graph at each level of hierarchy within the Kimble representation.

In the future, characterization should take advantage of the information al-
ready gathered and computed by GCC itself. It could also employ a communica-
tion interface with the native compiler or other static analysis tools, and exploit
profiling data.

4 Program Transformation and Code Generation

This section describes the back-end of Gomet: how it adapts the parallelism
exposed in the Kimble representation and how it outputs C source code. Figure
5 shows the flow in which it operates.

Kimble

Transformations

Target

Description

.C

Executable

File

Kimble I.R.

Gomet Back-end
(use of cost-models, profiling data)

C Code

Generation

Parallelism

Adaptation

Native

Compilation

Tools

A B

MPSoC

Specialized

C Source Files

Fig. 5. Inputs and outputs of Gomet’s back-end.

The Kimble representation is iteratively transformed to map parallel branches
of the tree to the available resources of the architecture. When this process is
done, the tree is walked to generate C source code.

4.1 Kimble Transformations

The Kimble representation can be simplified and modified by means of four
transformations:

Pruning. The pruning transformation removes empty nodes which are notably
added during the systematic construction of the representation.

Aggregation. The aggregation transformation encapsulates chains of depen-
dent statements into clusters.

Encapsulation. Also known as outlining (opposed to inlining), the encapsu-
lation transformation detaches a branch from its context and inserts it into a
newly created function. The variables shared between the detached branch and
its environment are either put into a structure or passed as the function pa-
rameters. Besides isolating parallel tasks, this transformation allows to factorize
code, addressing MPSoCs constrainted environments.

Loop Fission. The loop fission transformation creates an outer loop which re-
defines the bounds of the transformed loop so that multiple sub-domains can be
processed independently. Currently, this transformation requires all iterations to
be independent (map parallelism). It allows SPMD (Single-Program Multiple-
Data) parallelism.

4.2 Adaptation to the Target Architecture

The adaptation process consists in coupling, through a dedicated API, a generic
tree traversal and transformation procedure with a target architecture descrip-
tion. The latter is selected when invoking GCC+Gomet with the command line
switch -fgomet-target.

Target Architecture Description. A target architecture description imple-
ments a set of callbacks to be used by the generic tree traversal procedure. The
first kind of callbacks implements cost models: computations, communications,
energy, etc. They are fed with the code characteristics gathered at the time of
the Kimble representation building. The second kind of callbacks implements
Kimble modifiers for parallelism implementation. For example, it may transform
and generate bits of Kimble to insert calls to dedicated fork/join intrinsics, vec-
tor instructions intrinsics, communication primitives, etc. In this perspective, the
target description can reference external libraries. The last kind of callbacks con-
cerns the state of the machine, for example it updates the number of remaining
free execution units.

Tree Traversal and Transformation. The traversal begins at the coarsest
level of granularity, i.e. the entry point of the program, and implements the node
decomposition technique described in [29]. For each set of concurrent nodes, a
set of cost models is used to determine if offloading them to one of the available
execution resource would be beneficial. If not enough concurrency is exposed,

the algorithm considers the slicing of parallel loops. If there is still not enough
concurrency, the tree traversal dives to consider a finer level of granularity. When
execution resources are exhausted or the offloading is impossible, the traversal
quits the current level of granularity and resumes its work on the next set of
concurrent nodes at the higher level.

4.3 C Source Code Output

Once the adaptation process is finished, the Kimble tree of each function is
walked in order to generate the corresponding C source code.

GCC and Gimple tree codes are associated to their C language idioms, and
SSA temporary variables are conserved and declared appropriately. Then, when
processing a C program, statements can be straightforwardly unparsed from their
Kimble representation. Loops are encapsulated using the usual C construct for,
while other control flow constructs are restored using if and goto statements.

Other input languages were not extensively tested, as the purpose of Gomet is
not to become a language conversion tool. However, converting Fortran canonical
types and loops seems to be sufficient to support a subset of that language.

Global variables, types and structures defined in the input program are re-
stored by inserting their definition at the top of the generated file. If the target
architecture uses a runtime library, for example Pthreads, appropriate headers
are also included.

Figure 6 is a shortened sample of the code generated for the sub4x4 dct()
function in x264. It shows the SSA form of statements and reconstituted loop
constructs.

5 Experiments

In this section, the results of the processing of four simple programs with
GCC+Gomet are presented. Though it targets MPSoCs, the first milestone of
Gomet does not include a machine description for such architecture, the C source
code generated uses a Pthreads execution model, as proof of concept.
Gomet was built within GCC trunk revision 153048, while the reference exe-
cutable and the output of GCC+Gomet were compiled with GCC 4.3.2. The
target machine is a quad-core Intel E5320 clocked at 1.86 GHz with 4 MB of
L2 cache. It has 4 GB RAM and runs Debian GNU/Linux with a 2.6.26 kernel.
In order to limit the duration of the data-dependence analysis, the problem size
was reduced and restored by hand in the generated code. Moreover, the repe-
tition of the workload was manually forced so that it was large enough for the
OS scheduler to allocate a physical core. Figure 7 shows the speed-up achieved
when targeting one, two and four cores. For comparison purpose, the figure also
shows the speed-up obtained after the program has been manually parallelized
with OpenMP pragmas.
Program A implements the sub16x16 dct() function presented in 3.3, Gomet

parallelized the calls to the subroutine sub8x8 dct(). Program B initializes three

1 void sub4x4_dct (int16_t *dct, uint8_t *p1, uint8_t *p2)
2 {
3 int16_t D_2820;
4 int D_2821;
5 [...] /* more local declarations, including SSA variables */
6 int16_t d[4][4];
7 int d12;
8

9 goto R_13; /* control flow restitution with gotos and labels */
10 R_13:
11 d_1 = (int16_t *) &(d);
12 pixel_sub_wxh (d_1, 4, p1, 16, p2, 32);
13 goto L_2;
14 L_2:
15 for (i=0; i<=3; i=i+1) /* reconstituted loop construct */
16 {
17 goto R_11;
18 R_11:
19 D_2820 = d[i][0];
20 D_2821 = (int) D_2820;
21 D_2822 = d[i][3];
22 D_2823 = (int) D_2822;
23 s03 = D_2823 + D_2821;
24 [...] /* more SSA statements */
25 tmp[3][i] = D_2843;
26 goto R_12;
27 R_12:
28 goto L_2_;
29 L_2_:
30 ;
31 }
32 goto R_14;
33 L_1:
34 for (i=0; i<=3; i=i+1) /* reconstituted loop construct */
35 {
36 goto R_9;
37 R_9:
38 D_2844 = tmp[i][0];
39 [...] /* more SSA statements */
40 D_2854 = (int16_t *) ((void *)dct + D_2853);
41 D_2854[2] = D_2838;
42 goto R_10;
43 R_10:
44 goto L_1_;
45 L_1_:
46 ;
47 }
48 goto R_15;
49 R_15:
50 return;
51 R_14:
52 goto L_1;
53 }

Fig. 6. Shortened sample of code generated by GCC+Gomet.

 0

 1

 2

 3

 4

 5

A. sub16x16-dct B. matmul C. sobel D. filterbank D’. filterbank fixed

s
p
e
e
d
-u

p
 f
a
c
to

r

GCC+Gomet (one core) GCC+Gomet (two cores) GCC+Gomet (four cores) GCC+OpenMP by hand

Fig. 7. Speed-up measurement of four programs processed with GCC+Gomet.

matrices A, B, C, and computes C = C + AB. The initialization of each matrix
is performed in parallel and the outer loop of the matrix product is parallelized.
Program C is a Sobel edge detection image filter. The horizontal and vertical
gradients are computed in parallel, and on the 4 cores variant, their respective
outer loops are parallelized. The outer loop of the magnitude computation is par-
allelized. Program D comes from the Stream-It [5] benchmark suite, it performs
multi-rate signal processing. Gomet parallelized the outer loop of the processing
to filter channels in parallel.
Those results show the ability of Gomet to generate valid parallel C source code,
offering equivalent speed-ups to the ones obtained manually with OpenMP prag-
mas. However, they also suggest that the form of the code generated by Gomet
affects the optimization passes of the native compiler. While little benefit can
be measured for programs A and C, program D is negatively impacted. Figure 8

1 for (k=0; (k<N_col)&(k<=j); ++k)
2 Vect_H[i][j] += H[i][k]*r[j-k];

A. Original code

1 Vect_H_I_I_lsm_2 = Vect_H[i][j];
2 D_2798 = 1;
3 for (k=0; D_2798!=0;)
4 {
5 D_2785 = Vect_H_I_I_lsm_2;
6 D_2788 = D_2787[k];
7 D_2789 = j - k;
8 D_2790 = (long unsigned int) D_2789;
9 D_2791 = D_2790 * sizeof(double);

10 D_2792 = (double *) ((void *)r + D_2791);
11 D_2793 = *(D_2792);
12 D_2794 = D_2788 * D_2793;
13 D_2795 = D_2785 + D_2794;
14 Vect_H_I_I_lsm_2 = D_2795;
15 k = k + 1;
16 D_2796 = k < N_col;
17 D_2797 = k <= j;
18 D_2798 = D_2796 && D_2797;
19 }
20 Vect_H[i][j] = Vect_H_I_I_lsm_2;

B. GCC+Gomet generated code

Fig. 8. Inner loop of a convolution code in Filterbank.

compares the original code of a convolution in the D program to the generated
one, it shows two problems met with GCC 4.3.2 as the native compiler. First,

the exit condition of the loop is computed in the loop body (lines 16, 17, 18)
and stored into a SSA temporary variable, making it difficult for GCC 4.3.2 to
optimize the conditional jumps sequence. Second, the Vect H I I lsm 2 value is
duplicated into a SSA temporary variable (line 5), preventing GCC 4.3.2 from
optimizing the accumulation (lines 13 and 14).
As figure 7 shows, the generated code for program D performs as well as the
OpenMP code if manually fixed (by removing the mentioned SSA variables).
In a future version of the code generator, an assignment chain compaction pass
may be experimented to address this issue and explore the interaction between
Gomet and the native compiler’s optimizations.

6 Conclusion and Future Work

The mapping of parallel computations to MPSoCs raises complex inter-dependent
trade-offs which require automated code generation tools. This paper introduced
Gomet, an extension to GCC which enables the generation of parallelized C
source code based on a hierarchical intermediate representation of the input
program. This representation can express multiple granularities of parallelism,
and is transformed to exploit the target architecture resources. Early experi-
ments show encouraging results and validate the code generation approach used
in Gomet.

The first milestone of the project intended to set up an effective parallelism
adapation chain. The next milestone will focus on the support of more complex
machine descriptions, distributed memory architectures and load balancing.

Besides, there are many other directions for future develoments in Gomet.
First, the exhaustive dependence analysis could be hybridized with faster ap-
proaches when the code exposes regular patterns such as linear iteration spaces.
Second, the machine description could interface Gomet with the native compil-
ers of targeted cores, taking advantage of their detailed knowledge of instruction
sets. Third, supporting the Link Time Optimization of the forthcoming GCC
4.5 would enable Gomet to deal with multiple input source files. Finally, in ad-
dition to C, the support of additional input languages and their features could
be investigated.

7 Acknowledgements

The authors would like to thank Professor William Jalby for its insightful com-
ments about this work.

References

1. Gschwind, M. et al.: Synergistic Processing in Cell’s Multicore Architecture. IEEE
MICRO 26(2) (2006)

2. Wentzlaff, D. et al.: On-Chip Interconnection Architecture of the Tile Processor.
IEEE Micro 27(5) (2007)

3. Duller, A., Panesar, G., Towner, D.: Parallel Processing: the picoChip Way. Com-
municating Process Architectures (2003)

4. Greiner, A.: Tsar : a scalable, shared memory, many-cores architecture with global
cache coherence. In: 9th Int. Forum on Embedded MPSoC and Multicore. (2009)

5. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A Language for Stream-
ing Applications. In: Computational Complexity. (2002)

6. Khronos OpenCL Working Group: The OpenCL Specification (Version 1.0) (2008)
7. Rus, S., Rauchwerger, L., Hoeflinger, J.: Hybrid analysis: static & dynamic memory

reference analysis. International Journal of Parallel Programming 31(4) (2003)
8. Calcado, F., Louise, S., David, V., Merigot, A.: Efficient use of processing cores

on heterogeneous multicore architecture. In: CISIS ’09. (2009)
9. Kimura, K. et al.: Multigrain Parallel Processing on Compiler Cooperative Chip

Multiprocessor. (2005)
10. ACOTES: Advanced Compiler Technologies for Embedded Streaming:

http://www.hitech-projects.com/euprojects/acotes/
11. Blume, W. et al.: Parallel Programming with Polaris. Computer 29(12) (1996)
12. Polychronopoulos, C. et al.: Parafrase-2: an environment for parallelizing, parti-

tioning, synchronizing, and scheduling programs on multiprocessors. International
Journal of High Speed Computing 1(1) (1989)

13. Irigoin, F., Triolet, R.: Semantical interprocedural parallelization: An overview of
the PIPS project. In: ICS ’91, ACM New York, NY, USA (1991)

14. Hall, Mary W. et al. : Interprocedural parallelization analysis in SUIF. ACM
TOPLAS 27(4) (2005)

15. Okamoto, M. et al.: Hierarchical macro-dataflow computation scheme. In: IEEE
PACRIM ’95. (1995)

16. Miyamoto, T. et al.: Parallelization with Automatic Parallelizing Compiler Gen-
erating Consumer Electronics Multicore API. In: IEEE APDCT ’08. (2008)

17. OpenMP Architectural Review Board: OpenMP 3.0 specification (2008)
18. The Mercurium compiler: http://nanos.ac.upc.edu/content/mercurium-compiler
19. Bodin F. et al.: Sage++: An Object-Oriented Toolkit and Class Library for Build-

ing Fortran and C++ Restructuring Tools. In: OONSKI ’94. (1994)
20. Labonte, F. et al.: The stream virtual machine. In: PACT ’04, IEEE (2004)
21. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. ASPLOS ’06 (2006) 151–162
22. Kudlur, M., Mahlke, S.: Orchestrating the execution of stream programs on mul-

ticore platforms. PLDI ’08 (2008)
23. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software Pipelined Execution

of Stream Programs on GPUs. In: CGO ’09, IEEE Computer Society (2009)
24. Pop, A., Pop, S., Sjödin, J.: Automatic Streamization in GCC. In: 2009 GCC

Developer’s Summit. (2009)
25. Hoeflinger, J.: Interprocedural Parallelization Using Memory Classification Anal-

ysis. PhD thesis, University of Illinois at Urbana-Champaign (1998)
26. Warren, J.: A hierarchical basis for reordering transformations. In: POPL ’84,

ACM (1984)
27. Sarkar, V., Hennessy, J.: Partitioning parallel programs for macro-dataflow. In:

ACM LFP ’86, ACM (1986)
28. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. 9(3) (1987)
29. Hoang, P., Rabaey, J.: Scheduling of DSP Programs onto Multiprocessors for

Maximum Throughput. IEEE Transactions on Signal Processing 41(6) (1993)
30. x264 - a free h264/avc encoder: http://www.videolan.org/developers/x264.html

