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• Collective Mind approach combined with expert knowledge and 

predictive modeling 

• Collective Mind framework basics 

• Plugin-based type-free and schema-free infrastructure 

• Portable file (json) based repository 

• Auto-tuning and predictive modeling scenarios 

• Demo 

• Conclusions and future works 

Background 
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Solution 

Motivation: back to basics 

Decision 
(depends on user 

requirements) 

Result 

Available choices 
(solutions) 

User requirements:  

most common:  

minimize all costs 
(time, power consumption,  

price, size, faults, etc) 

guarantee real-time constraints 
(bandwidth, QOS, etc) 

Service/application 
providers 

(supercomputing, 
cloud computing, 
mobile systems) 

Should provide  choices  
and help with decisions 

Hardware and 
software designers 

End users 

Task 
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Solutions 

Challenges 

Task 

Result 

GCC 4.1.x 

GCC 4.2.x 

GCC 4.3.x 

GCC 4.4.x 

GCC 4.5.x 

GCC 4.6.x 

GCC 4.7.x 

ICC 10.1 

ICC 11.0 

ICC 11.1 

ICC 12.0 

ICC 12.1 
LLVM 2.6 

LLVM 2.7 

LLVM 2.8 

LLVM 2.9 

LLVM 3.0 

Phoenix 

MVS XLC 

Open64 

Jikes 
Testarossa 

OpenMP MPI 

HMPP 

OpenCL 

CUDA 
gprof 

prof 

perf 

oprofile 

PAPI 

TAU 

Scalasca 

VTune 

Amplifier scheduling 

algorithm-
level TBB 

MKL 

ATLAS program-
level 

function-
level 

Codelet 

loop-level 

hardware 
counters 

IPA 

polyhedral 
transformations 

LTO 
threads process 

pass 
reordering 

run-time 
adaptation 

per phase 
reconfiguration 

cache size 

frequency 

bandwidth 

HDD size 

TLB 

ISA 

memory size 

cores 

processors 

threads 

power 
consumption execution time 

reliability 

Clean up this mess! 
 
 

Simplify analysis, tuning and 
modelling of computer systems  

for non-computer engineers 
 

Bring together researchers from 
interdisciplinary communities 

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Understanding computer systems’ behavior: a physicist’s approach 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Understanding computer systems’ behavior: a physicist’s approach 

Expose 
object 

information flow 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Expose 
object 

information flow 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

information flow 

expose characteristics 

Observe system 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradually expose properties, characteristics, choices 

Expose 
object 

expose and 
explore choices 

information flow 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

(choices, 
properties, 

characteristics, 
system state, 

data) 
information flow 

expose characteristics 

Universal Learning  
Module 

expose system  
state 

expose  
properties 

expose  
characteristics 

set  
requirements 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Classify, build models, predict behavior 

Expose 
object 

information flow 

expose system  
state 

Object 
wrapper and 
repository: 

observe 
behavior and 
keep history 

(choices, 
properties, 

characteristics, 
system state, 

data) 

history 
(experience) 

information flow 

expose  
properties 

expose characteristics 

expose  
characteristics 

continuously build, 
validate or refine 
classification and 
predictive model 

on the fly 

expose and 
explore choices 

set  
requirements 

Universal Learning  
Module 

Evolutionary approach, not revolutionary, i.e. do not rebuild existing SW/HW stack from 
scratch but wrap up existing tools and techniques, and gradually clean up the mess! 
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Unified 
web 

interface 

Unified 
web 

interface 

Unified 
web 

interface 

Unified 
web 

interface 

Expose and exchange 
optimization knowledge and 

models in a unified way 
through http 

Use distributed, noSQL 
repository to store highly 
heterogeneous “big” data 

Transparently crowdsource learning of a behavior of any existing mobile, 
cluster, cloud computer system 

Extrapolate collective knowledge to build faster and more power efficient computer systems 
Build self-tuning machines using agent-based models 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual decomposition, parameterization, observation  
and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual decomposition, parameterization, observation  
and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

cTuning3  framework  aka  Collective Mind 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Gradual top-down decomposition, parameterization,  
observation and exploration of a system 

Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Li
gh
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w
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cTuning3  framework  aka  Collective Mind 
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Example of characterizing/explaining behavior of computer systems 

Gradually expose 
some characteristics 

Gradually expose 
some properties/choices 

 
 

Compile Program time …   compiler flags; pragmas … 

 
 

Run code Run-time 
environment 

time; CPI, power 
consumption … 

pinning/scheduling … 

System cost;  architecture; frequency; cache size… 

Data set size; values; description … precision … 

 
 

 
  

Analyze profile time;  size … instrumentation; profiling … 

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules. 

Combine expert knowledge with automatic detection! 

Start from coarse-grain and gradually move to fine-grain level! 
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How we can explain the following observations for some piece of code (“codelet object”)? 

(LU-decomposition codelet, Intel Nehalem) 

Example of characterizing/explaining behavior of computer systems 
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Add 1 property: matrix size 
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Dataset property: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Try to build a model to correlate objectives (CPI) and features (matrix size). 

Start from simple models: linear regression (detect coarse grain effects) 
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Dataset property: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Dataset properties: matrix size 

If more observations, validate model and detect discrepancies! 

Continuously retrain models to fit new data! 

Use model to “focus” exploration on “unusual” behavior! 

Example of characterizing/explaining behavior of computer systems 
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Gradually increase model complexity if needed (hierarchical modeling).  
For example, detect fine-grain effects (singularities) and characterize them. 
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Dataset properties: matrix size 

Example of characterizing/explaining behavior of computer systems 
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Start adding more properties (one more architecture with twice bigger cache)! 

Use automatic approach to correlate all objectives and features. 
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Dataset properties: matrix size 

L3 = 4Mb 

L3 = 8Mb 

Example of characterizing/explaining behavior of computer systems 
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Continuously build and refine 
classification (decision trees for 

example) and predictive models on all 
collected data to improve predictions. 

Continue exploring design and 
optimization spaces  

(evaluate different architectures, 
optimizations, compilers, etc.) 

Focus exploration on unexplored 
areas, areas with high variability 

or with high mispredict rate of models  

β 

ε cM predictive model module 

CPI = ε + 1000 × β × data size 

Example of characterizing/explaining behavior of computer systems 
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Size < 1012 

1012 < Size < 2042 

Size > 2042 & GCC 

Size > 2042 & ICC & O2 

Size > 2042 & ICC & O3 

Optimize decision tree (many different algorithms) 
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects) 

Compact data on-line before sharing with other users! 

Model optimization and data compaction 
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Dataset features: matrix size 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative advice system 
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Dataset features: matrix size 

Collaboratively and continuously add expert advices or automatic optimizations. 

Automatically characterize problem (extract all 
possible features: hardware counters, semantic 

features, static features, state of the system, etc) 

Add manual analysis if needed 

Extensible and collaborative advice system 
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Dataset features: matrix size 

cM advice system: 

Possible problem: 
Cache conflict misses degrade performance 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative advice system 
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Dataset features: matrix size 

cM advice system: 

Possible problem: 
Cache conflict misses degrade performance 

Possible solution: 
Array padding (A[N,N] -> A[N,N+1]) 

Effect:  
~30% execution time improvement 

 

Collaboratively and continuously add expert advices or automatic optimizations. 

Extensible and collaborative expert system 
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Dataset features: matrix size 

Add dynamic memory characterization through semantically non-equivalent modifications. 

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses. 

Intentionally change/break semantics to observe reaction in terms of performance/power etc! 

for 

  for 

    for 

      addr = a[0,0] 

      load … [addr+index1]… 

      mulss … [addr+index2]… 

      subss … [addr+index3]… 

      store … [addr+index4]… 

      addr + = 4 

 

System reaction to code changes: physicist’s view 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 
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Dataset features: matrix size 

for 

  for 

    for 

      addr = a[0,0] 

      load … [addr+index1]… 

      mulss … [addr+index2]… 

      subss … [addr+index3]… 

      store … [addr+index4]… 

      addr + = 0 

 

Add dynamic memory characterization through semantically non-equivalent modifications. 

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses. 

Intentionally change/break semantics to observe reaction in terms of performance/power etc! 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Dataset features: matrix size 

Extended CTI advices based on additional information in the repository! 

Focus optimizations to speed up search: which/where? 

Advice: 
Small gap (arithmetic dominates): 

• Focus on ILP optimizations  
• Run on complex out-of-order 

core 
• Increase processor frequency to 

speed up application 
 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Dataset features: matrix size 
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Advice: 
Small gap (arithmetic dominates): 

• Focus on ILP optimizations  
• Run on complex out-of-order 

core 
• Increase processor frequency to 

speed up application 
 

Extended CTI advices based on additional information in the repository! 

Focus optimizations to speed up search: which/where? 

Advice: 
Big gap (data accesses dominate): 
• Focus on memory optimizations  

• Run on simple core 
• Decrease processor frequency to 

save power 
 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 
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Dataset features: matrix size 
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Advice: 
Small gap (arithmetic dominates): 

• Focus on ILP optimizations  
• Run on complex out-of-order 

core 
• Increase processor frequency to 

speed up application 
 

Extended CTI advices based on additional information in the repository! 

Focus optimizations to speed up search: which/where? 

Advice: 
Big gap (data accesses dominate): 
• Focus on memory optimizations  

• Run on simple core 
• Decrease processor frequency to 

save power 
 

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound 
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004 

System reaction to code changes: physicist’s view 

Can add/remove 
instructions, 

Can add/remove 
threads, etc … 
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cd [application_directory] 

make CC=icc  CC_OPTS=-fast                

 or           

icc -fast *.c 

time ./a.out < [my_dataset] > [output] 

 record “-fast”, execution time 

Implementation in open-source cTuning1 framework 
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Implementation in open-source cTuning1 framework 

cd [application_directory] 

make CC=icc  CC_OPTS=-fast                

 or           

icc -fast *.c 

time ./a.out < [my_dataset] > [output] 

 record “-fast”, execution time 

 

ccc-comp build=“make” compiler=icc opts=“-fast” 

ccc-comp compiler=icc opts=“-fast” 

ccc-run prog=./a.out cmd=“< [my dataset]” 

 ccc-time <cmd> 

ccc-record-stats <file_with_stats> 

• Low level platform-dependent plugins in C 

• Communication through text file or directly through MySQL database 

• High level platform-independent exploration or analysis plugins in PHP 

• Web services at cTuning.org as plugins in PHP 
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Compilation abstraction 
supports multiple compilers and 

languages 

ccc-comp 

Compiler(s) 

 

Multiple user architectures 

 

Execution abstraction 
supports multiple architectures, 
remote SSH execution, profiling 

ccc-run 
Low-level execution 

abstraction 
timing, profiling, 

hardware counters 

ccc-time 

Application  

Interactive Compilation 
Interface 

fine-grain analysis and 
optimization 

 

Multiple 
datasets 

(from 
cBench) 

Implementation in open-source cTuning1 framework 
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High-level optimization tools 
compiler and platform independent 

- perform iterative optimization: 
compiler flags or ICI passes/parameters  
[random, one off, one by one, focused] 
- user optimization plugins 

ccc-run-* 

 

Compilation abstraction 
supports multiple compilers and 

languages 

ccc-comp 

Compiler(s) 

Multiple user architectures 

 High-level machine learning tools 
- build ML models 
- extract program static/dynamic features 
- predict “good” program optimizations 

ccc-ml-* 

Execution abstraction 
supports multiple architectures, 
remote SSH execution, profiling 

ccc-run 
Low-level execution 

abstraction 
timing, profiling, 

hardware counters 

ccc-time 

Application  

Interactive Compilation 
Interface 

fine-grain analysis and 
optimization 

 

Multiple 
datasets 

(from 
cBench) 

Implementation in open-source cTuning1 framework 
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High-level optimization tools 
compiler and platform independent 

- perform iterative optimization: 
compiler flags or ICI passes/parameters  
[random, one off, one by one, focused] 
- user optimization plugins 

ccc-run-* 

 

Compilation abstraction 
supports multiple compilers and 

languages 

ccc-comp 

Communication with COD 

ccc-db-send-stats-* 

Compiler(s) 

Multiple user architectures 

 

Collective Optimization Database (COD) MySQL 
Common database: keep info about all 
architectures, environments, programs,  
compilers, etc 
Optimization database:  keep info about 
interesting optimization cases from the community 
and expert advices/knowledge 

High-level machine learning tools 
- build ML models 
- extract program static/dynamic features 
- predict “good” program optimizations 

ccc-ml-* 

COD tools 
- administration                            db/admin 
- optimization analysis             db/analysis 

Execution abstraction 
supports multiple architectures, 
remote SSH execution, profiling 

ccc-run 

Communication with COD 

ccc-db-send-stats* 

Low-level execution 
abstraction 

timing, profiling, 
hardware counters 

ccc-time 

Application  

Interactive Compilation 
Interface 

fine-grain analysis and 
optimization 

 

Multiple 
datasets 

(from 
cBench) 

CCC configuration 
configure all tools, COD, architecture, 

compiler, benchmarks, etc 

ccc-configure-* 

Implementation in open-source cTuning1 framework 
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High-level optimization tools 
compiler and platform independent 

- perform iterative optimization: 
compiler flags or ICI passes/parameters  
[random, one off, one by one, focused] 
- user optimization plugins 

ccc-run-* 

 

Compilation abstraction 
supports multiple compilers and 

languages 

ccc-comp 

Communication with COD 

ccc-db-send-stats-* 

Compiler(s) 

Multiple user architectures 

 

Collective Optimization Database (COD) MySQL 
Common database: keep info about all 
architectures, environments, programs,  
compilers, etc 
Optimization database:  keep info about 
interesting optimization cases from the community  
and expert advices/knowledge 

High-level machine learning tools 
- build ML models 
- extract program static/dynamic features 
- predict “good” program optimizations 

ccc-ml-* 

COD tools 
- administration                            db/admin 
- optimization analysis             db/analysis 

Execution abstraction 
supports multiple architectures, 
remote SSH execution, profiling 

ccc-run 

Communication with COD 

ccc-db-send-stats* 

Low-level execution 
abstraction 

timing, profiling, 
hardware counters 

ccc-time 

Application  

Interactive Compilation 
Interface 

fine-grain analysis and 
optimization 

 

Multiple 
datasets 

(from 
cBench) 

Web access to COD 

http://ctuning.org 

CCC configuration 
configure all tools, COD, architecture, 

compiler, benchmarks, etc 

ccc-configure-* 

Implementation in open-source cTuning1 framework 
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MySQL-based Collective Optimization Database 

Platforms 
unique PLATFORM_ID 

Compilers 
unique COMPILER_ID 

 Runtime environments 
unique RE_ID 

 

 
Programs 

unique PROGRAM_ID 
 

 

 
Datasets 

unique DATASET_ID 
 

 

 

 

Platform features 
unique PLATFORM_FEATURE_ID 

Global platform optimization flags 
unique OPT_PLATFORM_ID 

Global optimization flags 
unique OPT_ID 

Optimization passes 
unique OPT_PASSES_ID 

 

 

Compilation info 
unique COMPILE_ID 

 

 

 

 

Execution info 
unique RUN_ID 

unique RUN_ID_ASSOCIATE 

 

 

 

 

 

Program passes 
associated COMPILE_ID 

 Program features 
associated COMPILE_ID 

 

Common Optimization Database (shared among all users) 

Local or shared databases with optimization cases 
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Problems with cTuning1 

• Difficult to extend (C, various hardwired components, need to 
change schema and types in MySQL) 

• No convenient way of sharing modules, benchmarks, data sets, 
models (manual, csv files, emails, etc) 

• Problems with repository scalability 

• Complex, hardwired interfaces 
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cd [application_directory] 

make CC=icc  CC_OPTS=-fast                

 or           

icc -fast *.c 

time ./a.out < [my_dataset] > [output] 

 record “-fast”, execution time 

cTuning3 aka Collective Mind framework basics 
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cd [application_directory] 

make CC=icc  CC_OPTS=-fast                

 or           

icc -fast *.c 

time ./a.out < [my_dataset] > [output] 

 record “-fast”, execution time 

cTuning3 aka Collective Mind framework basics 

cM kernel 

code.source build 

Universal  
cM FE 

cM 
plugins 

(modules) 

code run 

compiler build 

… 

E nd-users or 
cM developers 

CMD 

python python 
or any other 

language 
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cd [application_directory] 

make CC=icc  CC_OPTS=-fast                

 or           

icc -fast *.c 

time ./a.out < [my_dataset] > [output] 

 record “-fast”, execution time 

cTuning3 aka Collective Mind framework basics 

cM kernel 

code.source build 

Universal  
cM FE 

cM 
plugins 

(modules) 

code run 

compiler build 

… 

E nd-users or 
cM developers 

CMD 

python python 
or any other 

language 
cm [module name] [action] (param1=value1 param2=value2 … -- unparsed command line) 

cm code.source build ct_compiler=icc13 ct_optimizations=-fast 

cm compiler build -- icc -fast *.c 

cm code run os=android binary=./a.out dataset=image-crazy-scientist.pgm 

 

Should be able to run on any OS (Windows, Linux, Android, MacOS, etc)! 
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cTuning3 aka Collective Mind framework basics 

Simple and minimalistic high-level cM interface - one function (!) 

should be easy to connect to any language if needed 

schema and type-free (only strings) -  

easily extended when needed for research (agile methodology)! 

 

(python dictionary) output = cm_kernel.access ( (python dictionary) input ) 

 

Input:  { 

    cm_run_module_uoa  - cM plugin name (or some UID) 

    cm_action  - cM plugin action (function) 

    parameters   - (module and action dependent) 

 } 

Output: { 

    cm_return  - if 0, success 

      if >0, error 

      if <0, warning 

    cm_error   - if cm_return>0, error message 

    parameters  - (module and action dependent) 

 } 
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Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Collective Mind Repository basics 
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Application 

Compilers and auxiliary tools 

Binary and libraries 

Architecture 

Run-time environment 

State of the system 

Data set 

Algorithm Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

Repo/models 

.cmr    / module UID or alias (cM UOA)                  / data UID or alias (cm UOA) 

Repository root   First level directory                    Second level directory 

Very flexible and 
portable 
 
Easy to access, 
edit and move 
data 
 
Can be per  
application, 
experiment, 
architecture, etc 
 
Can be easily 
shared (through 
web, SVN, GIT, 
FTP) 

Collective Mind Repository basics 
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Schema-free extensible data meta-representation 

cM uses JSON as internal data representation format: 

JSON or JavaScript Object Notation, is a text-based open standard designed for 
human-readable data interchange (from Wikipedia) 

 

• very intuitive to use and modify 

• nearly native for python and php;   simple libraries for Java, C, C++, … 

• easy to index with powerful indexing services (cM uses ElasticSearch) 

 

cM records input and output of the module for reproducibility! 

 

Data is referenced by CID: 

(Repository UID:) Module UID: Data UID 
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Example of JSON entry ctuning.compiler:icc-12.x-linux 
 

{ 

  "all_compiler_flags_desc": { 

 

    "##base_flag": { 

      "type": "text“ 

      "desc_text": "compiler flag: -O3",  

      "field_size": "7",  

 

      "has_choice": "yes",  

      "choice": [ 

        "-O0", "-O1", "-O2", "-Os", "-O3", "-fast" 

      ],  

      "default_value": "-O3",  

 

      "explorable": "yes",  

      "explore_level": "1",  

      "explore_type": "fixed",  

      "forbid_disable_at_random": "yes" 

    }, 

    … 

  }  

… 

} 

Schema-free extensible data representation 
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Treat 
computer 

system as a 
black box 

 

Task 

Result 

Execute code 

Input dictionary that can 
be represented as JSON 

{“run_cmd”:’image’, 
“binary_name”:”a.out”, 

“run_set_env”:[], 
“run_output_files”:[], 

“work_dir”:””, 
“run_time_out”:””, 

“code_deps”:[], 
“run_os_uoa”:””, 

…} 

Function 
(for example 

“run”) 

invoke object, 
observe 

behavior and 
keep history 

python module that has a UID and alias 
(for example, “code” / 688dee2e7014f1fb) 

Universal modules/functions 

Output dictionary that can 
be represented as JSON 

{“cm_return”:’’, 
“failed_run”:””, 

“run_time_by_module”:””, 
…} 

gradually 
describe input 

and output 
(choices, 

characteristics, 
etc) 

Save 
input/output 

and related files 

Index input and 
output for fast 

search 
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cM repository (.cmr) 

cM data 

Web 

Command line  
and scripts 

cM kernel 

Programs  
 

Tools 
 

Systems 

OpenME 
cM interface 

php 

shell (cm) 

C 

C++ 

Fortran 

Java 

End user 
research and 
development 

scenarios 

End user 
instrumented 
and adaptive 

programs, 
tools and 
systems 

cM kernel  
in Python* 

 
•native support  

for other languages 
maybe added later 

access 

load data 

load module 

create entry 

delete entry 

list entries 

auth user 

… 

kernel 

core 

repo 

user 

module 

web 

code 

code.source 

os 

package 

dataset 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

Collective Mind overall structure 

• Gradually add more modules, interfaces and data 
depending on user/project/company needs 

• Gradually add more parameters 

• Gradually expose choices, properties, characteristics 

Community  
or workgroup 

cmx - user-
friendly CMD 

extension 
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Academia:  
public, open-source modules and data 

Collaborative, reproducible experiments: research LEGO 

code.source code system 

os dataset package 

ctuning.processor 

ctuning.compiler 

choice 

os.script 

Industry:  
proprietary modules and data 

 
code.source code system 

os dataset package 

ctuning.processor 

ctuning.compiler 

choice 

os.script 

•Continuously adding “basic blocks” (modules) 
•Adding tools, applications, datasets 
•Gradually stabilize interfaces 

Users can start connecting modules and data together to prepare 
experimental pipelines with various observation, characterization,  

auto-tuning and predictive scenarios! 
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Experimental pipelines for auto-tuning and modeling 

•Init pipeline    
•Detected system information    
•Initialize parameters    
•Prepare dataset    
•Clean program    
•Prepare compiler flags    
•Use compiler profiling    
•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning    
•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)    
•Use Alchemist plugin (currently for GCC)    
•Build program    
•Get objdump and md5sum (if supported)    
•Use OpenME for fine-grain program analysis and online tuning (build & run)    
•Use 'Intel VTune Amplifier' to collect hardware counters    
•Use 'perf' to collect hardware counters    
•Set frequency (in Unix, if supported)    
•Get system state before execution    
•Run program    
•Check output for correctness (use dataset UID to save different outputs)    
•Finish OpenME    
•Misc info    
•Observed characteristics    
•Observed statistical characteristics    
•Finalize pipeline 
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Currently prepared experiments 

•Polybench - numerical kernels with exposed parameters of all matrices in cM 

• CPU: 28 prepared benchmarks 

• CUDA: 15 prepared benchmarks 

• OpenCL: 15 prepared benchmarks 

• cBench - 23 benchmarks with 20 and 1000 datasets per benchmark 

• Codelets - 44 codelets from embedded domain (provided by CAPS Entreprise) 

• SPEC 2000/2006 

• Description of 32-bit and 64-bit OS: Windows, Linux, Android 

• Description of major compilers: GCC 4.x, LLVM 3.x, Open64/Pathscale 5.x, ICC 12.x 

• Support for collection of hardware counters: perf, Intel vTune 

• Support for frequency modification 

• Validated on laptops, mobiles, tables, GRID/cloud - can work even from the USB key 
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Visualize and analyze optimization spaces 

Program:  cBench: susan corners  Processor:  ARM v6, 830MHz 
Compiler:  Sourcery GCC for ARM v4.6.1 OS:  Android OS v2.3.5 
System:  Samsung Galaxy Y  Data set:  MiDataSet #1, image, 600x450x8b PGM, 263KB 
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Gradually increase granularity and complexity 

Gradually expose 
some characteristics 

Gradually expose 
some choices 

Algorithm 
selection 

(time) productivity, variable-
accuracy, complexity … 

Language, MPI, OpenMP, TBB, MapReduce … 

Compile Program time …   compiler flags; pragmas … 

Code analysis & 
Transformations 

time;   
memory usage;  
code size … 

transformation ordering;   
polyhedral transformations;  
transformation parameters; 
instruction ordering … 
 

Process 

Thread 

Function 

Codelet 

Loop 

Instruction 

Run code Run-time 
environment 

time; power consumption … pinning/scheduling … 

System cost; size … CPU/GPU; frequency; memory  hierarchy … 

Data set size; values; description … precision … 

Run-time 
analysis 

time;  precision … hardware counters; power meters … 

Run-time state processor state; cache state 
…  

helper threads; hardware counters … 

Analyze profile time;  size … instrumentation; profiling … 

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI 
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Interactive compilers, tools and applications 

Application 

Source-to-source 
transformation tools 

binary 

execution 

Binary transformation 
tools 

Production Compilers 

Traditional compilation, 
analysis and optimization 

Often internal compiler 
decisions are not known or 
there is no precise control 

even through pragmas.  

Interference with internal 
compiler optimizations 
complicates program 

analysis and 
characterization. 

Current pragma based auto-
tuning frameworks are very 

complex. 

What about finer-
grain level? 
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Detect optimization 

flags 

Optimization 

manager 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

Compiler 

 

... 

Pass N 

OpenME - interactive plugin and event-based 
interface to “open up” applications and tools 
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Detect optimization 

flags 

Optimization 

manager 
Event 

Pass N 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

Feature 

Event 

Open

ME 

 

Compiler with OpenME 

 

... 

OpenME - interactive plugin and event-based 
interface to “open up” applications and tools 
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Detect optimization 

flags 

Optimization 

manager 
Event 

Pass N 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

Feature 

Event 

Open

ME 

... 

OpenME Plugins 

 

cM modules 

Selecting pass 

sequences 

Extracting static 

program features 

<Dynamically linked 

shared libraries> 

... 

OpenME - interactive plugin and event-based 
interface to “open up” applications and tools 

Compiler with OpenME 
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Detect optimization 

flags 

Optimization 

manager 
Event 

Pass N 

Event 

Pass 1 

GCC Data Layer 

AST, CFG, CF, etc 

Feature 

Event 

Open

ME 

... 

OpenME Plugins 

 

cM modules 

Selecting pass 

sequences 

Extracting static 

program features 

<Dynamically linked 

shared libraries> 

... 

We collaborated with Google 
and Mozilla to move similar 
framework to mainline GCC 

so that everyone can use it for 
research. 

Now available in GCC >=4.6 

OpenME - interactive plugin and event-based 
interface to “open up” applications and tools 

Compiler with OpenME 
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Add cM wrapper (compiler) 

Application 

Source-to-source 
transformation tools 

Production Compiler with OpenME 

binary 

execution 

Binary transformation 
tools 

Very simple plugin framework 
for any compiler or tool 

Full control over optimization 
decisions! 

Remove interference between 
different tools 

cM framework 

OpenME - interactive plugin and event-based 
interface to “open up” applications and tools 
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Example of OpenME for LLVM 3.2 

tools/clang/tools/driver/cc1_main.cpp 
 
#include "openme.h“ 
… 
int cc1_main(const char **ArgBegin, const char **ArgEnd,              
   const char *Argv0, void *MainAddr) { 
 
   openme_init("UNI_ALCHEMIST_USE", "UNI_ALCHEMIST_PLUGINS", NULL, 0); 
   … 
  // Execute the frontend actions.   
  Success = ExecuteCompilerInvocation(Clang.get());   
  openme_callback("ALC_FINISH", NULL); 
   … 
} 

OpenME: 3 functions only! 
• openme_init(…)     - initialize/load plugin 
• openme_callback(char* event_name, void* params) - call event 
• openme_finish(…)     - finalize (if needed) 
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Example of OpenME for LLVM 3.2 

lib/Transforms/Scalar/LoopUnrollPass.cpp 
 
#include <cJSON.h> 
#include "openme.h“ 
… 
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) { 
 
   struct alc_unroll   { 
      const char *func_name;     
      const char *loop_name;     
      cJSON *json;     
      int factor;     
    } alc_unroll; 
… 
alc_unroll.func_name=(Header->getParent()->getName()).data();  
alc_unroll.loop_name=(Header->getName()).data();   
openme_callback("ALC_TRANSFORM_UNROLL_INIT", &alc_unroll); 
… 
 // Unroll the loop.   
alc_unroll.factor=Count;   
openme_callback("ALC_TRANSFORM_UNROLL", &alc_unroll);   
Count=alc_unroll.factor;   
 
if (!UnrollLoop(L, Count, TripCount, UnrollRuntime, TripMultiple, LI, &LPM))     
    return false; 
… 
} 
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Example of OpenME for LLVM 3.2 

Alchemist plugin (.so/dll object) - in development  
for online/interactive analysis, tuning and adaptation 

 
#include <cJSON.h> 
#include <openme.h> 
 
int openme_plugin_init(struct openme_info *ome_info) { 
  … 
   openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL_INIT", alc_transform_unroll_init);   
  openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL", alc_transform_unroll);   
  openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL_FEATURES", alc_transform_unroll_features);    
  openme_register_callback(ome_info, "ALC_FINISH", alc_finish); 
  … 
} 
 
extern void alc_transform_unroll_init(struct alc_unroll *alc_unroll){ 
   … 
} 
 
extern void alc_transform_unroll(struct alc_unroll *alc_unroll) { 
  … 
} 
… 
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Example of OpenME for OpenCL/CUDA C application 

• 2mm.c / 2mm.cu 
… 
#ifdef OPENME 
#include <openme.h> 
#endif 
… 
 
int main(void) { 
… 
#ifdef OPENME   
  openme_init(NULL,NULL,NULL,0);   
  openme_callback("PROGRAM_START", NULL); 
#endif 
… 
#ifdef OPENME   
openme_callback("ACC_KERNEL_START", NULL); 
#endif   
 
cl_launch_kernel(); 
  or 
mm2Cuda(A, B, C, D, E, E_outputFromGpu); 
 
#ifdef OPENME   
openme_callback("ACC_KERNEL_END", NULL); 
#endif 
… 

… 
#ifdef OPENME   
 openme_callback("KERNEL_START", NULL); 
#endif     
 
mm2_cpu(A, B, C, D, E); 
 
#ifdef OPENME   
  openme_callback("KERNEL_END", NULL); 
#endif 
 
#ifdef OPENME    
openme_callback("PROGRAM_END", NULL); 
#endif 
… 
} 
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Example of OpenME for Fortran application 

• matmul.F 
 

 PROGRAM MATMULPROG 
… 
 
 INTEGER*8 OBJ, OPENME_CREATE_OBJ_F       
CALL OPENME_INIT_F(""//CHAR(0), ""//CHAR(0), ""//CHAR(0), 0)       
CALL OPENME_CALLBACK_F("PROGRAM_START"//CHAR(0)) 
 
… 
 CALL OPENME_CALLBACK_F("KERNEL_START"//CHAR(0));       
DO I=1, I_REPEAT        
   CALL MATMUL       
END DO       
CALL OPENME_CALLBACK_F("KERNEL_END"//CHAR(0)); 
 
… 
 CALL OPENME_CALLBACK_F("PROGRAM_END"//CHAR(0))       
END 
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1) Prepare pre-release around May/June 2013 (BSD-style license) - ASK for preview! 

2) Reproduce my past published research within new framework: 
• Add “classical” classification and predictive models 
• Add various exploration strategies (random, focused) 
• Add run-time adaptation scenarios (CUDA/OpenCL scheduling, pinning, etc) 
• Add co-design scenarios 

3) Use framework for analysis and auto-tuning of industrial applications 

4) Help to customize framework for industrial usages (consulting) 

5) Applying for new funding (academic and industrial) 

6) Continue virtual collaborative cTuning Lab to build community: 
• Public repository to share applications, datasets, models at cTuning.org: 
• New publication model for reproducible research 
• Community R&D discussion 
 http://groups.google.com/group/collective-mind 
• Collect data from Android mobiles 

Next steps 
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