
Collective Mind infrastructure and repository
to crowdsource auto-tuning

Grigori Fursin INRIA, France April 2013

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 2 / 66

• Collective Mind approach combined with expert knowledge and

predictive modeling

• Collective Mind framework basics

• Plugin-based type-free and schema-free infrastructure

• Portable file (json) based repository

• Auto-tuning and predictive modeling scenarios

• Demo

• Conclusions and future works

Background

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 3 / 66

Solution

Motivation: back to basics

Decision
(depends on user

requirements)

Result

Available choices
(solutions)

User requirements:

most common:

minimize all costs
(time, power consumption,

price, size, faults, etc)

guarantee real-time constraints
(bandwidth, QOS, etc)

Service/application
providers

(supercomputing,
cloud computing,
mobile systems)

Should provide choices
and help with decisions

Hardware and
software designers

End users

Task

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 4 / 66

Solutions

Challenges

Task

Result

GCC 4.1.x

GCC 4.2.x

GCC 4.3.x

GCC 4.4.x

GCC 4.5.x

GCC 4.6.x

GCC 4.7.x

ICC 10.1

ICC 11.0

ICC 11.1

ICC 12.0

ICC 12.1
LLVM 2.6

LLVM 2.7

LLVM 2.8

LLVM 2.9

LLVM 3.0

Phoenix

MVS XLC

Open64

Jikes
Testarossa

OpenMP MPI

HMPP

OpenCL

CUDA
gprof

prof

perf

oprofile

PAPI

TAU

Scalasca

VTune

Amplifier scheduling

algorithm-
level TBB

MKL

ATLAS program-
level

function-
level

Codelet

loop-level

hardware
counters

IPA

polyhedral
transformations

LTO
threads process

pass
reordering

run-time
adaptation

per phase
reconfiguration

cache size

frequency

bandwidth

HDD size

TLB

ISA

memory size

cores

processors

threads

power
consumption execution time

reliability

Clean up this mess!

Simplify analysis, tuning and
modelling of computer systems

for non-computer engineers

Bring together researchers from
interdisciplinary communities

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 5 / 66

Treat
computer

system as a
black box

Task

Result

Understanding computer systems’ behavior: a physicist’s approach

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 6 / 66

Treat
computer

system as a
black box

Task

Result

Understanding computer systems’ behavior: a physicist’s approach

Expose
object

information flow

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 7 / 66

Treat
computer

system as a
black box

Task

Result

Expose
object

information flow

Object
wrapper and
repository:

observe
behavior and
keep history

information flow

expose characteristics

Observe system

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 8 / 66

Treat
computer

system as a
black box

Task

Result

Gradually expose properties, characteristics, choices

Expose
object

expose and
explore choices

information flow

Object
wrapper and
repository:

observe
behavior and
keep history

(choices,
properties,

characteristics,
system state,

data)
information flow

expose characteristics

Universal Learning
Module

expose system
state

expose
properties

expose
characteristics

set
requirements

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 9 / 66

Treat
computer

system as a
black box

Task

Result

Classify, build models, predict behavior

Expose
object

information flow

expose system
state

Object
wrapper and
repository:

observe
behavior and
keep history

(choices,
properties,

characteristics,
system state,

data)

history
(experience)

information flow

expose
properties

expose characteristics

expose
characteristics

continuously build,
validate or refine
classification and
predictive model

on the fly

expose and
explore choices

set
requirements

Universal Learning
Module

Evolutionary approach, not revolutionary, i.e. do not rebuild existing SW/HW stack from
scratch but wrap up existing tools and techniques, and gradually clean up the mess!

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 10 / 66

Unified
web

interface

Unified
web

interface

Unified
web

interface

Unified
web

interface

Expose and exchange
optimization knowledge and

models in a unified way
through http

Use distributed, noSQL
repository to store highly
heterogeneous “big” data

Transparently crowdsource learning of a behavior of any existing mobile,
cluster, cloud computer system

Extrapolate collective knowledge to build faster and more power efficient computer systems
Build self-tuning machines using agent-based models

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 11 / 66

Treat
computer

system as a
black box

Task

Result

Gradual decomposition, parameterization, observation
and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 12 / 66

Treat
computer

system as a
black box

Task

Result

Gradual decomposition, parameterization, observation
and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

cTuning3 framework aka Collective Mind

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 13 / 66

Treat
computer

system as a
black box

Task

Result

Gradual top-down decomposition, parameterization,
observation and exploration of a system

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Li
gh

t-
w

ei
gh

t
in

te
rf

ac
e

to
 c

o
n

n
ec

t
 m

o
d

u
le

s,
 d

at
a

an
d

 m
o

d
el

s

cTuning3 framework aka Collective Mind

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 14 / 66

Example of characterizing/explaining behavior of computer systems

Gradually expose
some characteristics

Gradually expose
some properties/choices

Compile Program time … compiler flags; pragmas …

Run code Run-time
environment

time; CPI, power
consumption …

pinning/scheduling …

System cost; architecture; frequency; cache size…

Data set size; values; description … precision …

Analyze profile time; size … instrumentation; profiling …

Start coarse-grain decomposition of a system (detect coarse-grain effects first). Add universal learning modules.

Combine expert knowledge with automatic detection!

Start from coarse-grain and gradually move to fine-grain level!

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 15 / 66

0

1

2

3

4

5

6

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

How we can explain the following observations for some piece of code (“codelet object”)?

(LU-decomposition codelet, Intel Nehalem)

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 16 / 66

Add 1 property: matrix size

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset property: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 17 / 66

Try to build a model to correlate objectives (CPI) and features (matrix size).

Start from simple models: linear regression (detect coarse grain effects)

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset property: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 18 / 66

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

If more observations, validate model and detect discrepancies!

Continuously retrain models to fit new data!

Use model to “focus” exploration on “unusual” behavior!

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 19 / 66

Gradually increase model complexity if needed (hierarchical modeling).
For example, detect fine-grain effects (singularities) and characterize them.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 20 / 66

Start adding more properties (one more architecture with twice bigger cache)!

Use automatic approach to correlate all objectives and features.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
ro

g
ra

m
 /

 a
rc

h
it

e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset properties: matrix size

L3 = 4Mb

L3 = 8Mb

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 21 / 66

Continuously build and refine
classification (decision trees for

example) and predictive models on all
collected data to improve predictions.

Continue exploring design and
optimization spaces

(evaluate different architectures,
optimizations, compilers, etc.)

Focus exploration on unexplored
areas, areas with high variability

or with high mispredict rate of models

β

ε cM predictive model module

CPI = ε + 1000 × β × data size

Example of characterizing/explaining behavior of computer systems

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 22 / 66

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

4

5

6

Dataset features: matrix size

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Size < 1012

1012 < Size < 2042

Size > 2042 & GCC

Size > 2042 & ICC & O2

Size > 2042 & ICC & O3

Optimize decision tree (many different algorithms)
Balance precision vs cost of modeling = ROI (coarse-grain vs fine-grain effects)

Compact data on-line before sharing with other users!

Model optimization and data compaction

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 23 / 66

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative advice system

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 24 / 66

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

Collaboratively and continuously add expert advices or automatic optimizations.

Automatically characterize problem (extract all
possible features: hardware counters, semantic

features, static features, state of the system, etc)

Add manual analysis if needed

Extensible and collaborative advice system

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 25 / 66

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

cM advice system:

Possible problem:
Cache conflict misses degrade performance

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative advice system

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 26 / 66

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
o

d
e
/a

rc
h

it
e
c
tu

re
 b

e
h

a
v

io
r:

 C
P

I

Dataset features: matrix size

cM advice system:

Possible problem:
Cache conflict misses degrade performance

Possible solution:
Array padding (A[N,N] -> A[N,N+1])

Effect:
~30% execution time improvement

Collaboratively and continuously add expert advices or automatic optimizations.

Extensible and collaborative expert system

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 27 / 66

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

Add dynamic memory characterization through semantically non-equivalent modifications.

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses.

Intentionally change/break semantics to observe reaction in terms of performance/power etc!

for

 for

 for

 addr = a[0,0]

 load … [addr+index1]…

 mulss … [addr+index2]…

 subss … [addr+index3]…

 store … [addr+index4]…

 addr + = 4

System reaction to code changes: physicist’s view

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 28 / 66

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

for

 for

 for

 addr = a[0,0]

 load … [addr+index1]…

 mulss … [addr+index2]…

 subss … [addr+index3]…

 store … [addr+index4]…

 addr + = 0

Add dynamic memory characterization through semantically non-equivalent modifications.

For example, convert all array accesses to scalars to detect balance between CPU/memory accesses.

Intentionally change/break semantics to observe reaction in terms of performance/power etc!

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 29 / 66

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

Extended CTI advices based on additional information in the repository!

Focus optimizations to speed up search: which/where?

Advice:
Small gap (arithmetic dominates):

• Focus on ILP optimizations
• Run on complex out-of-order

core
• Increase processor frequency to

speed up application

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 30 / 66

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

W
e

ll
-k

n
o

w
n

 g
a
p

 b
e

tw
e

e
n

 a
ri

th
m

e
ti

c

a
n

d
 d

a
ta

 a
c
c

e
s

s
e

s

Advice:
Small gap (arithmetic dominates):

• Focus on ILP optimizations
• Run on complex out-of-order

core
• Increase processor frequency to

speed up application

Extended CTI advices based on additional information in the repository!

Focus optimizations to speed up search: which/where?

Advice:
Big gap (data accesses dominate):
• Focus on memory optimizations

• Run on simple core
• Decrease processor frequency to

save power

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 31 / 66

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
x
e
c
u

ti
o

n
 t

im
e
,

s
e
c

Dataset features: matrix size

W
e

ll
-k

n
o

w
n

 g
a
p

 b
e

tw
e

e
n

 a
ri

th
m

e
ti

c

a
n

d
 d

a
ta

 a
c
c

e
s

s
e

s

Advice:
Small gap (arithmetic dominates):

• Focus on ILP optimizations
• Run on complex out-of-order

core
• Increase processor frequency to

speed up application

Extended CTI advices based on additional information in the repository!

Focus optimizations to speed up search: which/where?

Advice:
Big gap (data accesses dominate):
• Focus on memory optimizations

• Run on simple core
• Decrease processor frequency to

save power

Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for Determining a Lower Bound
on Execution Time. Concurrency Practice and Experience, 16(2-3), pages 271-292, 2004

System reaction to code changes: physicist’s view

Can add/remove
instructions,

Can add/remove
threads, etc …

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 32 / 66

cd [application_directory]

make CC=icc CC_OPTS=-fast

 or

icc -fast *.c

time ./a.out < [my_dataset] > [output]

 record “-fast”, execution time

Implementation in open-source cTuning1 framework

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 33 / 66

Implementation in open-source cTuning1 framework

cd [application_directory]

make CC=icc CC_OPTS=-fast

 or

icc -fast *.c

time ./a.out < [my_dataset] > [output]

 record “-fast”, execution time

ccc-comp build=“make” compiler=icc opts=“-fast”

ccc-comp compiler=icc opts=“-fast”

ccc-run prog=./a.out cmd=“< [my dataset]”

 ccc-time <cmd>

ccc-record-stats <file_with_stats>

• Low level platform-dependent plugins in C

• Communication through text file or directly through MySQL database

• High level platform-independent exploration or analysis plugins in PHP

• Web services at cTuning.org as plugins in PHP

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 34 / 66

Compilation abstraction
supports multiple compilers and

languages

ccc-comp

Compiler(s)

Multiple user architectures

Execution abstraction
supports multiple architectures,
remote SSH execution, profiling

ccc-run
Low-level execution

abstraction
timing, profiling,

hardware counters

ccc-time

Application

Interactive Compilation
Interface

fine-grain analysis and
optimization

Multiple
datasets

(from
cBench)

Implementation in open-source cTuning1 framework

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 35 / 66

High-level optimization tools
compiler and platform independent

- perform iterative optimization:
compiler flags or ICI passes/parameters
[random, one off, one by one, focused]
- user optimization plugins

ccc-run-*

Compilation abstraction
supports multiple compilers and

languages

ccc-comp

Compiler(s)

Multiple user architectures

 High-level machine learning tools
- build ML models
- extract program static/dynamic features
- predict “good” program optimizations

ccc-ml-*

Execution abstraction
supports multiple architectures,
remote SSH execution, profiling

ccc-run
Low-level execution

abstraction
timing, profiling,

hardware counters

ccc-time

Application

Interactive Compilation
Interface

fine-grain analysis and
optimization

Multiple
datasets

(from
cBench)

Implementation in open-source cTuning1 framework

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 36 / 66

High-level optimization tools
compiler and platform independent

- perform iterative optimization:
compiler flags or ICI passes/parameters
[random, one off, one by one, focused]
- user optimization plugins

ccc-run-*

Compilation abstraction
supports multiple compilers and

languages

ccc-comp

Communication with COD

ccc-db-send-stats-*

Compiler(s)

Multiple user architectures

Collective Optimization Database (COD) MySQL
Common database: keep info about all
architectures, environments, programs,
compilers, etc
Optimization database: keep info about
interesting optimization cases from the community
and expert advices/knowledge

High-level machine learning tools
- build ML models
- extract program static/dynamic features
- predict “good” program optimizations

ccc-ml-*

COD tools
- administration db/admin
- optimization analysis db/analysis

Execution abstraction
supports multiple architectures,
remote SSH execution, profiling

ccc-run

Communication with COD

ccc-db-send-stats*

Low-level execution
abstraction

timing, profiling,
hardware counters

ccc-time

Application

Interactive Compilation
Interface

fine-grain analysis and
optimization

Multiple
datasets

(from
cBench)

CCC configuration
configure all tools, COD, architecture,

compiler, benchmarks, etc

ccc-configure-*

Implementation in open-source cTuning1 framework

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 37 / 66

High-level optimization tools
compiler and platform independent

- perform iterative optimization:
compiler flags or ICI passes/parameters
[random, one off, one by one, focused]
- user optimization plugins

ccc-run-*

Compilation abstraction
supports multiple compilers and

languages

ccc-comp

Communication with COD

ccc-db-send-stats-*

Compiler(s)

Multiple user architectures

Collective Optimization Database (COD) MySQL
Common database: keep info about all
architectures, environments, programs,
compilers, etc
Optimization database: keep info about
interesting optimization cases from the community
and expert advices/knowledge

High-level machine learning tools
- build ML models
- extract program static/dynamic features
- predict “good” program optimizations

ccc-ml-*

COD tools
- administration db/admin
- optimization analysis db/analysis

Execution abstraction
supports multiple architectures,
remote SSH execution, profiling

ccc-run

Communication with COD

ccc-db-send-stats*

Low-level execution
abstraction

timing, profiling,
hardware counters

ccc-time

Application

Interactive Compilation
Interface

fine-grain analysis and
optimization

Multiple
datasets

(from
cBench)

Web access to COD

http://ctuning.org

CCC configuration
configure all tools, COD, architecture,

compiler, benchmarks, etc

ccc-configure-*

Implementation in open-source cTuning1 framework

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 38 / 66

MySQL-based Collective Optimization Database

Platforms
unique PLATFORM_ID

Compilers
unique COMPILER_ID

 Runtime environments
unique RE_ID

Programs

unique PROGRAM_ID

Datasets

unique DATASET_ID

Platform features
unique PLATFORM_FEATURE_ID

Global platform optimization flags
unique OPT_PLATFORM_ID

Global optimization flags
unique OPT_ID

Optimization passes
unique OPT_PASSES_ID

Compilation info
unique COMPILE_ID

Execution info
unique RUN_ID

unique RUN_ID_ASSOCIATE

Program passes
associated COMPILE_ID

 Program features
associated COMPILE_ID

Common Optimization Database (shared among all users)

Local or shared databases with optimization cases

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 39 / 66

Problems with cTuning1

• Difficult to extend (C, various hardwired components, need to
change schema and types in MySQL)

• No convenient way of sharing modules, benchmarks, data sets,
models (manual, csv files, emails, etc)

• Problems with repository scalability

• Complex, hardwired interfaces

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 40 / 66

cd [application_directory]

make CC=icc CC_OPTS=-fast

 or

icc -fast *.c

time ./a.out < [my_dataset] > [output]

 record “-fast”, execution time

cTuning3 aka Collective Mind framework basics

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 41 / 66

cd [application_directory]

make CC=icc CC_OPTS=-fast

 or

icc -fast *.c

time ./a.out < [my_dataset] > [output]

 record “-fast”, execution time

cTuning3 aka Collective Mind framework basics

cM kernel

code.source build

Universal
cM FE

cM
plugins

(modules)

code run

compiler build

…

E nd-users or
cM developers

CMD

python python
or any other

language

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 42 / 66

cd [application_directory]

make CC=icc CC_OPTS=-fast

 or

icc -fast *.c

time ./a.out < [my_dataset] > [output]

 record “-fast”, execution time

cTuning3 aka Collective Mind framework basics

cM kernel

code.source build

Universal
cM FE

cM
plugins

(modules)

code run

compiler build

…

E nd-users or
cM developers

CMD

python python
or any other

language
cm [module name] [action] (param1=value1 param2=value2 … -- unparsed command line)

cm code.source build ct_compiler=icc13 ct_optimizations=-fast

cm compiler build -- icc -fast *.c

cm code run os=android binary=./a.out dataset=image-crazy-scientist.pgm

Should be able to run on any OS (Windows, Linux, Android, MacOS, etc)!

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 43 / 66

cTuning3 aka Collective Mind framework basics

Simple and minimalistic high-level cM interface - one function (!)

should be easy to connect to any language if needed

schema and type-free (only strings) -

easily extended when needed for research (agile methodology)!

(python dictionary) output = cm_kernel.access ((python dictionary) input)

Input: {

 cm_run_module_uoa - cM plugin name (or some UID)

 cm_action - cM plugin action (function)

 parameters - (module and action dependent)

 }

Output: {

 cm_return - if 0, success

 if >0, error

 if <0, warning

 cm_error - if cm_return>0, error message

 parameters - (module and action dependent)

 }

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 44 / 66

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Collective Mind Repository basics

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 45 / 66

Application

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data set

Algorithm Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

Repo/models

.cmr / module UID or alias (cM UOA) / data UID or alias (cm UOA)

Repository root First level directory Second level directory

Very flexible and
portable

Easy to access,
edit and move
data

Can be per
application,
experiment,
architecture, etc

Can be easily
shared (through
web, SVN, GIT,
FTP)

Collective Mind Repository basics

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 46 / 66

Schema-free extensible data meta-representation

cM uses JSON as internal data representation format:

JSON or JavaScript Object Notation, is a text-based open standard designed for
human-readable data interchange (from Wikipedia)

• very intuitive to use and modify

• nearly native for python and php; simple libraries for Java, C, C++, …

• easy to index with powerful indexing services (cM uses ElasticSearch)

cM records input and output of the module for reproducibility!

Data is referenced by CID:

(Repository UID:) Module UID: Data UID

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 47 / 66

Example of JSON entry ctuning.compiler:icc-12.x-linux

{

 "all_compiler_flags_desc": {

 "##base_flag": {

 "type": "text“

 "desc_text": "compiler flag: -O3",

 "field_size": "7",

 "has_choice": "yes",

 "choice": [

 "-O0", "-O1", "-O2", "-Os", "-O3", "-fast"

],

 "default_value": "-O3",

 "explorable": "yes",

 "explore_level": "1",

 "explore_type": "fixed",

 "forbid_disable_at_random": "yes"

 },

 …

 }

…

}

Schema-free extensible data representation

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 48 / 66

Treat
computer

system as a
black box

Task

Result

Execute code

Input dictionary that can
be represented as JSON

{“run_cmd”:’image’,
“binary_name”:”a.out”,

“run_set_env”:[],
“run_output_files”:[],

“work_dir”:””,
“run_time_out”:””,

“code_deps”:[],
“run_os_uoa”:””,

…}

Function
(for example

“run”)

invoke object,
observe

behavior and
keep history

python module that has a UID and alias
(for example, “code” / 688dee2e7014f1fb)

Universal modules/functions

Output dictionary that can
be represented as JSON

{“cm_return”:’’,
“failed_run”:””,

“run_time_by_module”:””,
…}

gradually
describe input

and output
(choices,

characteristics,
etc)

Save
input/output

and related files

Index input and
output for fast

search

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 49 / 66

cM repository (.cmr)

cM data

Web

Command line
and scripts

cM kernel

Programs

Tools

Systems

OpenME
cM interface

php

shell (cm)

C

C++

Fortran

Java

End user
research and
development

scenarios

End user
instrumented
and adaptive

programs,
tools and
systems

cM kernel
in Python*

•native support

for other languages
maybe added later

access

load data

load module

create entry

delete entry

list entries

auth user

…

kernel

core

repo

user

module

web

code

code.source

os

package

dataset

…

…

…

…

…

…

…

…

…

…

…

…

Collective Mind overall structure

• Gradually add more modules, interfaces and data
depending on user/project/company needs

• Gradually add more parameters

• Gradually expose choices, properties, characteristics

Community
or workgroup

cmx - user-
friendly CMD

extension

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 50 / 66

Academia:
public, open-source modules and data

Collaborative, reproducible experiments: research LEGO

code.source code system

os dataset package

ctuning.processor

ctuning.compiler

choice

os.script

Industry:
proprietary modules and data

code.source code system

os dataset package

ctuning.processor

ctuning.compiler

choice

os.script

•Continuously adding “basic blocks” (modules)
•Adding tools, applications, datasets
•Gradually stabilize interfaces

Users can start connecting modules and data together to prepare
experimental pipelines with various observation, characterization,

auto-tuning and predictive scenarios!

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 51 / 66

Experimental pipelines for auto-tuning and modeling

•Init pipeline
•Detected system information
•Initialize parameters
•Prepare dataset
•Clean program
•Prepare compiler flags
•Use compiler profiling
•Use cTuning CC/MILEPOST GCC for fine-grain program analysis and tuning
•Use universal Alchemist plugin (with any OpenME-compatible compiler or tool)
•Use Alchemist plugin (currently for GCC)
•Build program
•Get objdump and md5sum (if supported)
•Use OpenME for fine-grain program analysis and online tuning (build & run)
•Use 'Intel VTune Amplifier' to collect hardware counters
•Use 'perf' to collect hardware counters
•Set frequency (in Unix, if supported)
•Get system state before execution
•Run program
•Check output for correctness (use dataset UID to save different outputs)
•Finish OpenME
•Misc info
•Observed characteristics
•Observed statistical characteristics
•Finalize pipeline

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 52 / 66

Currently prepared experiments

•Polybench - numerical kernels with exposed parameters of all matrices in cM

• CPU: 28 prepared benchmarks

• CUDA: 15 prepared benchmarks

• OpenCL: 15 prepared benchmarks

• cBench - 23 benchmarks with 20 and 1000 datasets per benchmark

• Codelets - 44 codelets from embedded domain (provided by CAPS Entreprise)

• SPEC 2000/2006

• Description of 32-bit and 64-bit OS: Windows, Linux, Android

• Description of major compilers: GCC 4.x, LLVM 3.x, Open64/Pathscale 5.x, ICC 12.x

• Support for collection of hardware counters: perf, Intel vTune

• Support for frequency modification

• Validated on laptops, mobiles, tables, GRID/cloud - can work even from the USB key

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 53 / 66

Visualize and analyze optimization spaces

Program: cBench: susan corners Processor: ARM v6, 830MHz
Compiler: Sourcery GCC for ARM v4.6.1 OS: Android OS v2.3.5
System: Samsung Galaxy Y Data set: MiDataSet #1, image, 600x450x8b PGM, 263KB

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 54 / 66

Gradually increase granularity and complexity

Gradually expose
some characteristics

Gradually expose
some choices

Algorithm
selection

(time) productivity, variable-
accuracy, complexity …

Language, MPI, OpenMP, TBB, MapReduce …

Compile Program time … compiler flags; pragmas …

Code analysis &
Transformations

time;
memory usage;
code size …

transformation ordering;
polyhedral transformations;
transformation parameters;
instruction ordering …

Process

Thread

Function

Codelet

Loop

Instruction

Run code Run-time
environment

time; power consumption … pinning/scheduling …

System cost; size … CPU/GPU; frequency; memory hierarchy …

Data set size; values; description … precision …

Run-time
analysis

time; precision … hardware counters; power meters …

Run-time state processor state; cache state
…

helper threads; hardware counters …

Analyze profile time; size … instrumentation; profiling …

Coarse-grain vs. fine-grain effects: depends on user requirements and expected ROI

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 55 / 66

Interactive compilers, tools and applications

Application

Source-to-source
transformation tools

binary

execution

Binary transformation
tools

Production Compilers

Traditional compilation,
analysis and optimization

Often internal compiler
decisions are not known or
there is no precise control

even through pragmas.

Interference with internal
compiler optimizations
complicates program

analysis and
characterization.

Current pragma based auto-
tuning frameworks are very

complex.

What about finer-
grain level?

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 56 / 66

Detect optimization

flags

Optimization

manager

Pass 1

GCC Data Layer

AST, CFG, CF, etc

Compiler

...

Pass N

OpenME - interactive plugin and event-based
interface to “open up” applications and tools

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 57 / 66

Detect optimization

flags

Optimization

manager
Event

Pass N

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

Feature

Event

Open

ME

Compiler with OpenME

...

OpenME - interactive plugin and event-based
interface to “open up” applications and tools

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 58 / 66

Detect optimization

flags

Optimization

manager
Event

Pass N

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

Feature

Event

Open

ME

...

OpenME Plugins

cM modules

Selecting pass

sequences

Extracting static

program features

<Dynamically linked

shared libraries>

...

OpenME - interactive plugin and event-based
interface to “open up” applications and tools

Compiler with OpenME

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 59 / 66

Detect optimization

flags

Optimization

manager
Event

Pass N

Event

Pass 1

GCC Data Layer

AST, CFG, CF, etc

Feature

Event

Open

ME

...

OpenME Plugins

cM modules

Selecting pass

sequences

Extracting static

program features

<Dynamically linked

shared libraries>

...

We collaborated with Google
and Mozilla to move similar
framework to mainline GCC

so that everyone can use it for
research.

Now available in GCC >=4.6

OpenME - interactive plugin and event-based
interface to “open up” applications and tools

Compiler with OpenME

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 60 / 66

Add cM wrapper (compiler)

Application

Source-to-source
transformation tools

Production Compiler with OpenME

binary

execution

Binary transformation
tools

Very simple plugin framework
for any compiler or tool

Full control over optimization
decisions!

Remove interference between
different tools

cM framework

OpenME - interactive plugin and event-based
interface to “open up” applications and tools

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 61 / 66

Example of OpenME for LLVM 3.2

tools/clang/tools/driver/cc1_main.cpp

#include "openme.h“
…
int cc1_main(const char **ArgBegin, const char **ArgEnd,
 const char *Argv0, void *MainAddr) {

 openme_init("UNI_ALCHEMIST_USE", "UNI_ALCHEMIST_PLUGINS", NULL, 0);
 …
 // Execute the frontend actions.
 Success = ExecuteCompilerInvocation(Clang.get());
 openme_callback("ALC_FINISH", NULL);
 …
}

OpenME: 3 functions only!
• openme_init(…) - initialize/load plugin
• openme_callback(char* event_name, void* params) - call event
• openme_finish(…) - finalize (if needed)

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 62 / 66

Example of OpenME for LLVM 3.2

lib/Transforms/Scalar/LoopUnrollPass.cpp

#include <cJSON.h>
#include "openme.h“
…
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {

 struct alc_unroll {
 const char *func_name;
 const char *loop_name;
 cJSON *json;
 int factor;
 } alc_unroll;
…
alc_unroll.func_name=(Header->getParent()->getName()).data();
alc_unroll.loop_name=(Header->getName()).data();
openme_callback("ALC_TRANSFORM_UNROLL_INIT", &alc_unroll);
…
 // Unroll the loop.
alc_unroll.factor=Count;
openme_callback("ALC_TRANSFORM_UNROLL", &alc_unroll);
Count=alc_unroll.factor;

if (!UnrollLoop(L, Count, TripCount, UnrollRuntime, TripMultiple, LI, &LPM))
 return false;
…
}

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 63 / 66

Example of OpenME for LLVM 3.2

Alchemist plugin (.so/dll object) - in development
for online/interactive analysis, tuning and adaptation

#include <cJSON.h>
#include <openme.h>

int openme_plugin_init(struct openme_info *ome_info) {
 …
 openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL_INIT", alc_transform_unroll_init);
 openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL", alc_transform_unroll);
 openme_register_callback(ome_info, "ALC_TRANSFORM_UNROLL_FEATURES", alc_transform_unroll_features);
 openme_register_callback(ome_info, "ALC_FINISH", alc_finish);
 …
}

extern void alc_transform_unroll_init(struct alc_unroll *alc_unroll){
 …
}

extern void alc_transform_unroll(struct alc_unroll *alc_unroll) {
 …
}
…

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 64 / 66

Example of OpenME for OpenCL/CUDA C application

• 2mm.c / 2mm.cu
…
#ifdef OPENME
#include <openme.h>
#endif
…

int main(void) {
…
#ifdef OPENME
 openme_init(NULL,NULL,NULL,0);
 openme_callback("PROGRAM_START", NULL);
#endif
…
#ifdef OPENME
openme_callback("ACC_KERNEL_START", NULL);
#endif

cl_launch_kernel();
 or
mm2Cuda(A, B, C, D, E, E_outputFromGpu);

#ifdef OPENME
openme_callback("ACC_KERNEL_END", NULL);
#endif
…

…
#ifdef OPENME
 openme_callback("KERNEL_START", NULL);
#endif

mm2_cpu(A, B, C, D, E);

#ifdef OPENME
 openme_callback("KERNEL_END", NULL);
#endif

#ifdef OPENME
openme_callback("PROGRAM_END", NULL);
#endif
…
}

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 65 / 66

Example of OpenME for Fortran application

• matmul.F

 PROGRAM MATMULPROG
…

 INTEGER*8 OBJ, OPENME_CREATE_OBJ_F
CALL OPENME_INIT_F(""//CHAR(0), ""//CHAR(0), ""//CHAR(0), 0)
CALL OPENME_CALLBACK_F("PROGRAM_START"//CHAR(0))

…
 CALL OPENME_CALLBACK_F("KERNEL_START"//CHAR(0));
DO I=1, I_REPEAT
 CALL MATMUL
END DO
CALL OPENME_CALLBACK_F("KERNEL_END"//CHAR(0));

…
 CALL OPENME_CALLBACK_F("PROGRAM_END"//CHAR(0))
END

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 66 / 66

1) Prepare pre-release around May/June 2013 (BSD-style license) - ASK for preview!

2) Reproduce my past published research within new framework:
• Add “classical” classification and predictive models
• Add various exploration strategies (random, focused)
• Add run-time adaptation scenarios (CUDA/OpenCL scheduling, pinning, etc)
• Add co-design scenarios

3) Use framework for analysis and auto-tuning of industrial applications

4) Help to customize framework for industrial usages (consulting)

5) Applying for new funding (academic and industrial)

6) Continue virtual collaborative cTuning Lab to build community:
• Public repository to share applications, datasets, models at cTuning.org:
• New publication model for reproducible research
• Community R&D discussion
 http://groups.google.com/group/collective-mind
• Collect data from Android mobiles

Next steps

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 67 / 66

Acknowledgements

• PhD students and postdocs (my Intel Exascale team)

Abdul Wahid Memon, Pablo Oliveira, Yuriy Kashnikov

• Colleague from NCAR, USA

Davide Del Vento and his colleagues/interns

• Colleagues from IBM, CAPS, ARC (Synopsys), Intel, Google, ARM, ST

• Colleagues from Intel (USA)

David Kuck and David Wong

• cTuning community:

• EU FP6, FP7 program and HiPEAC network of excellence

http://www.hipeac.net

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 68 / 66

Main references

• Grigori Fursin. Collective Tuning Initiative: automating and accelerating development and
optimization of computing systems. Proceedings of the GCC Summit’09, Montreal, Canada, June
2009

• Grigori Fursin and Olivier Temam. Collective Optimization: A Practical Collaborative Approach.
ACM Transactions on Architecture and Code Optimization (TACO), December 2010, Volume 7,
Number 4, pages 20-49

• Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea
Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard,
Elton Ashton, Edwin Bonilla, John Thomson, Chris Williams, Michael O'Boyle. MILEPOST GCC:
machine learning enabled self-tuning compiler. International Journal of Parallel Programming
(IJPP), June 2011, Volume 39, Issue 3, pages 296-327

• Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier Temam and
Chengyong Wu. Deconstructing iterative optimization. ACM Transactions on Architecture and
Code Optimization (TACO), October 2012, Volume 9, Number 3

• Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam,
Chengyong Wu. Evaluating Iterative Optimization across 1000 Data Sets. PLDI'10

• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro.
Predictive runtime code scheduling for heterogeneous architectures. HiPEAC’09

Grigori Fursin “Collective Mind: novel methodology, framework and repository to crowdsource auto-tuning” HPSC 2013, NTU, Taiwan March, 2013 69 / 66

Main references

• Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long and Grigori Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. SMART'09 co-located with
HiPEAC'09

• Grigori Fursin, John Cavazos, Michael O'Boyle and Olivier Temam. MiDataSets: Creating The
Conditions For A More Realistic Evaluation of Iterative Optimization. HiPEAC’07

• F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint
and C.K.I. Williams. Using Machine Learning to Focus Iterative Optimization. CGO’06

•Grigori Fursin, Albert Cohen, Michael O'Boyle and Oliver Temam. A Practical Method For
Quickly Evaluating Program Optimizations. HiPEAC’05

•Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for
Determining a Lower Bound on Execution Time. Concurrency Practice and Experience, 16(2-3),
pages 271-292, 2004

• Grigori Fursin. Iterative Compilation and Performance Prediction for Numerical Applications.
Ph.D. thesis, University of Edinburgh, Edinburgh, UK, January 2004

